Pulse Sequence Looping

<

VARIAN

Paul Kinchesh
European MRI Applications Laboratory
Oxford, UK
September 2008

Introduction

The exact order that a sequence loops depends on a number of factors:
1. How sequence loops are ordered within the pulse sequence

2. The setting of the seqcon parameter.

3. The setting of the array parameter.
4. The setting of il and bs parameters.

Pulse Sequence Looping Functions

The following sequence functions are available for looping in a pulse sequence:

Function Description

loop A “compressed” loop

msloop A multiple slice loop, a “compressed” or “standard” loop
peloop A phase encode loop, a “compressed” or “standard” loop
peloop2 A 2" phase encode loop, a “compressed” or “standard” loop
nwloop A “compressed” loop for use in NOWAITgradients

Compressed Loops, Standard Loops and Parameter Arrays

Compressed Loops
Compressed loops are executed as many times as defined by the loop control arguments in
each pass through the pulse sequence.

Standard Loops
Standard loops execute multiple passes through the pulse sequence. The number of
passes is defined by the loop control arguments.

Parameter Arrays

Parameter arrays cause multiple passes through the pulse sequence in the same way as a
standard loop. The number of passes is determined by the number of elements in the
parameter array.

Data acquisition and nf

All of the data that are acquired in a single pass through the pulse sequence are stored
within the same data block of the raw fid file.

The raw fid file contains as many data blocks as there are passes through the experiment.

The parameter nf must be set to the number of traces* to be acquired in each block of data.
The setloop macro is used to set nf appropriately.

*A trace is typically a single FID or echo, i.e. a single acquisition of np points of data.

Parameter Arrays

By default, when parameters are created, they are set with protection bit 8 (value 256) off.

— Multiple values of a parameter cause an acquisition array

— the array parameter is set to include the name of the arrayed parameter

— the arraydim parameter is set to the size of the arrayed experiment.

— counter ix is used internally in pulse sequences to index the current array element with
1 <ix <arraydim

Example.

The default gems (2D gradient echo multi slice) parameters and sequence has
compressed muti-slice and phase encode loops to give a 2D multi-slice data set

nf=ns*nv I* There are nsxnv traces in each data block */

array=" I* array is an empty string */

arraydim=1 I* The sequence will execute once */

te=0.005,0.01,0.015 /* Set three echo times */

— array="te' [* The array string includes te */

— arraydim=3 I* The sequence will execute 3 times, once with each te */

Multiple Parameter Arrays

array="x,y’ indicates the parameters x and y are arrayed, with y taking precedence.
— order of experiments is X1Y1, X1Y2,... X1Yn, X2Y1, X2Y2,...X2Y ... Xn¥n
— arraydim=mxn

array="y,x' indicates the parameters x and y are arrayed, with x taking precedence.
— order of experiments is X1Y1, X2Y1,..- Xny 1, X1Y2, X2Y2,... X1y 2,-- Xn¥n
— arraydim=mxn

array="(x,y)' indicates the parameters x and y are jointly arrayed.
— order of experiments is X1Y1, X2Y2,... XnYn
— arraydim=n

Joint arrays can have up to 10 parameters.

Regular multiple arrays can have up to 20 parameters, with each parameter being either a
simple parameter or a diagonal array.

The total number of elements in all arrays can be 23%-1.

The last parameter in the array string cycles the fastest

seqcon

The secqon parameter is a string of five characters.

Each character in the string corresponds to data dimensions which are defined as follows.

seqcon character index Dimension Parameters
VnmrJ Parameter | Pulse sequence
[1] [0] Multi-echo ne
[2] [1] Multi-slice ns,pss
[3] [2] 1% phase encode nv, ni
[4] [3] 2" Phase encode | nv2,ni2
[5] [4] 3 Phase encode | nv3,ni3

Each character must take one of the following values:

C to signify a compressed loop
'S’ for a standard loop
n' for no loop

The secqon parameter is used to the set multi-slice and phase encode loops to be either
compressed, standard or not present.

secqgon is used in pulse sequences with msloop , peloop and peloop2 functions.

secqon is evaluated by the setloop macro to calculate nf .

The loop function

The function loop starts a compressed loop of the statements between the loop and
endloop functions. Real-time variables are used to control the number of times that the loop

is executed.

Example.

#include "sgl.c"
pulsesequence()

{
intvne =vl; /* Real-time variable for number of echoes */
intvne_ctr =v2; /[* Real-time variable for echo loop counter */
init_mri(); I* Retrieve standard sequence parameters including
ne, the number of echoes in a multi-echo sequence */
initval(ne,vne); /* Initialize vne */
loop(vne,vne_ctr); /* Start loop */

I* Pulse sequence statements for gradient prescription and acquisition go here */

endloop(vne_ctr); /* End loop */

}

loop(vne,vne_ctr);

The real-time variable vne is used to specify the number of times control is to pass through
the loop. vhe can be any positive number or zero.

The real-time variable vne_ctr is used as a counter to track of the number of times control
has passed through the loop. At the first pass through the loop vne_ctr is zero.

endloop(vne_ctr);

The endloop function checks vne_ctr against vne to figure whether to pass control back
to the loop function or to following pulse sequence statements.

segcon
Multi-echo sequences typically use the compressed loop function.

The 1° character of the seqcon string should be setto 'c’ for a compressed loop.
The setloop macro then calculates nf to include ne passes through the compressed loop.

If the 1% character of the seqcon string is setto'n' the setloop macro sets ne=1 and
then calculates nf accordingly.

If the 1% character of the seqcon string is setto's' the setloop macro reports an error.

The msloop function

The function msloop starts a multi-slice loop to execute statements between the msloop
and endmsloop functions. Real-time variables are used to control the loop.

Example.

#include "sgl.c"

pulsesequence()

{
intvns =v1; /* Real-time variable for number of slices */
intvns_ctr =v2; [* Real-time variable for slice loop counter */
init_mri(); I* Retrieve standard sequence parameters including
ns, the number of slices in a multi-slice sequence */
msloop(segcon[1],ns,vns,vns_ctr); /* Start multi-slice loop */

I* Pulse sequence statements including acquisition go here */

endmsloop(seqcon[l1],vns_ctr); I* End multi-slice loop */

}

seqcon, ns and pss

If a msloop is used the 2" character of the seqcon string can be set to:
'c’ for a compressed multi-slice loop or's' for a standard multi-slice loop.

The pss parameter is an array of positions of slices in a multi-slice experiment.

If the 2" character of the seqcon string is setto 'c’ for a compressed multi-slice loop:
— setprotect('pss’,'on’,256) is set so pss is not an acquisition array.

— pss is removed from the array parameter string (if it is there).

— arraydim is updated accordingly.

— setloop macro sets ns to the size of the pss array.

— setloop macro calculates nf to include ns passes.

If the 2" character of the seqcon string is setto's' for a standard multi-slice loop:
— setprotect('pss’, off',256) is set so pss is an acquisition array.

pss is added to the array parameter string.

arraydim is updated accordingly.

setloop macro sets ns=1.

LI

setloop macro calculates nf to include ns passes.

Multiple Parameter Arrays

If the 2" character of the seqcon string is setto's' for a standard multi-slice loop
— pss is added to the array parameter string

If other parameters are also arrayed
— the precedence with which pss cycles is determined by its position in the array string.

msloop(seqcon[1],ns,vns,vns_ctr);

The msloop function is defined in /vnmr/psg/rtcontrol.c
The behaviour depends on the value of the character passed in the 1% argument.

In the example, seqcon[1l] is passed - the 2" character of the seqcon string.

If seqcon[1]='c’ then:
If ns 21 then initval(ns,vns); else initval(1.0,vns);
A compressed loop is then executed using loop(vns,vns_ctr);

If seqcon[1]='s' then:
If ns>1 the sequence aborts.
Otherwise the following are set: initval(ns,vns); initval(0,vns_ctr);

Any other value of seqcon[l] causes the sequence to abort.

endmsloop(seqgcon[l],vns_ctr);

The endmsloop function is defined in /vnmr/psg/rtcontrol.c
The behaviour depends on the value of the character passed in the 1% argument.

If seqcon[1]='c’ then endloop(vns_ctr); is used to control the compressed loop.

Any other value of seqcon[1] just returns control to the sequence.

The peloop function

The function peloop starts a phase encode loop to execute statements between the
peloop and endpeloop functions. Real-time variables are used to control the loop.

Example.

#include "sgl.c"

pulsesequence()

{
intvnv =v1; /* Real-time variable for number of phase encodes */
intvnv_ctr =v2; /* Real-time variable for phase encode loop counter */
init_mri(); I* Retrieve standard sequence parameters including
nv, the number of phase encode steps in a sequence */
peloop(seqcon[2],nv,vnv,vnv_ctr); /* Start phase encode loop */

I* Pulse sequence statements including acquisition go here */

endpeloop(seqcon[2],vnv_ctr); I* End phase encode loop */

}

segcon, nv, nv2, nv3, ni, ni2 and ni3
peloop and peloop2 work in a way that is often misunderstood (not surprisingly) ...

If a peloop is used the 3™ character of the seqcon string can be set to:
'c’ for a compressed multi-slice loop or's' for a standard multi-slice loop.

Parameters are set as follows

seqcon character 'c’ 'S’ n'
1st ne error ne=1
2nd ns=size('pss’) ns=1 ns=1
3rd nv,ni=1 nv,ni=nv nv=0,ni=1
4th nv2,ni2=1 nv2,ni2=nv2 nv2=0,ni2=1
5th nv3,ni3=1 nv3,ni3=nv3 nv3=0,ni3=1

ne, nv, nv2, nv3 on their own mean the values simply remain as they have been set

nv: number of views in 1% phase encode dimension
nv2: number of views in 2" phase encode dimension
nv3: number of views in 3" phase encode dimension

segcon, nv, nv2, nv3, ni, ni2 and ni3
The use of ni , ni2 and ni3 is borrowed from high resolution NMR

ni : number of increments of the evolution time d2 in 2™ indirectly detected dimension
ni2 : number of increments of the evolution time d3 in 3" indirectly detected dimension
ni3 : number of increments of the evolution time d4 in 4™ indirectly detected dimension

“Hidden” arrays of size ni , ni2 and ni3 are set for those values that are > 1
— array='x,y' with ni>1 , ni2>1 and ni3>1 , can be thought of as
array=' n3,nz2,n, x\y'
where n, n2, and n3 are arrays of size ni , ni2 , and ni3 respectively.
This also demonstrates how the evolution times are incremented with respect to each other
and any other array elements.
— The evolution times are incremented more slowly than all other array elements.
— d4 is incremented more slowly than d3 which is incremented more slowly than d2.

This is exactly how standard phase encode loops are set.

NB The “hidden” arrays of size ni , ni2 and ni3 do show up in the pop-up array window.

What is the current element?

For standard phase encode loops we need to know exactly what phase encode step to
prescribe for any given array element.

Counter ix is used internally in pulse sequences to index the current array element with
1 <ix <arraydim

Integers d2_index , d3_index , and d4_index are calculated in integer math to provide the
indices of the respective arrays according to

d2_index = ((ix-1)/(arraydim/(ni*ni2*ni3))) % ni
d3_index = ((ix-1)/(arraydim/(ni2*ni3))) % ni2
d4_index = (ix-1)/(arraydim/ni3)

% is the modulus operator that computes the remainder of integer division.

peloop, seqcon, nf and arraydim

When the value of the seqcon string is changed the setloop macro is run to ensure that
the correct values of nf , ni , ni2 and ni3 are set with respect to the specified seqcon .
arraydim is updated internally with a VnmrJ command calcdim

peloop(seqcon[2],nv,vnv,vnv_ctr);
The peloop function is defined in /vnmr/psg/rtcontrol.c
The behaviour depends on the value of the character passed in the 1% argument.

In the example, seqcon[2] s passed - the 3™ character of the seqcon string.

If seqcon[2]="c’ then:
If nv =1 then initval(nv,vnv); else initval(1.0,vnv);
A compressed loop is then executed using loop(vnv,vnv_ctr);

If seqcon[2]='s' then:
If nv>1 then: initval(nv,vnv); initval((double)d2_index,vnv_ctr);
Otherwise: assign(zero,vnv); assign(zero,vnv_ctr);

Any other value of seqcon[2] causes the sequence to abort.

endpeloop(seqcon[2],vnv_ctr);

The endpeloop function is defined in /vnmr/psg/rtcontrol.c
The behaviour depends on the value of the character passed in the 1% argument.

If seqcon[2]='c’ then endloop(vnv_ctr); is used to control the compressed loop.

Any other value of seqcon[2] just returns control to the sequence.

The peloop2 function

The function peloop2 starts a phase encode loop to execute statements between the
peloop2 and endpeloop functions. Real-time variables are used to control the loop.

Example.

#include "sgl.c"

pulsesequence()

{
intvnv2 =vl; /* Real-time variable for number of PE steps */
intvnv2_ctr =v2; /* Real-time variable for phase encode loop counter */
init_mri(); I* Retrieve standard sequence parameters including nv2 ,
the number of PE steps in 2" phase encode dimension */
peloop2(seqcon[3],nv2,vnv2,vnv2_ctr); /* Start phase encode loop */

I* Pulse sequence statements including acquisition go here */

endpeloop(seqcon[3],vnv2_ctr); I* End phase encode loop */

}

peloop2(seqcon[3],nv2,vnv2,vnv2_ctr);

The peloop2 function is defined in /vnmr/psg/rtcontrol.c
The behaviour depends on the value of the character passed in the 1% argument.

In the example, seqcon[3] is passed - the 4™ character of the seqcon string.

The peloop2 function is used to allow prescription of standard phase encode loops in both
the 1% and 2" phase encode dimensions. Otherwise the peloop function could be used
twice in, for example, a 3D sequence with two phase encode dimensions.

It's only the use of the d3_index that makes the peloop2 function different:
If seqcon[3]='s' then:

If nv2 21 then: initval(nv2,vnv2); initval((doubl e) d3_i ndex,vnv2_ctr);
Otherwise: assign(zero,vnv2); assign(zero,vnv2_ctr);

The nwloop function
The nwloop function is used to loop during a gradient prescribed with a NOWAITilag.

Pulse sequence functions for prescribing gradients have a "wait" flag that can either be
WAIT the pulse sequence waits for the gradient to be played out before continuing.
NOWAIT the pulse sequence continues whilst the gradient is played out.

When a NOWAITgradient is used the total time duration of a loop that is executed during the
gradient must be known at run time so that the sequence can be properly interpreted.

The standard compressed loop function only takes real-time variables as arguments.
The function nwloop takes an additional argument (double) for the number of loops so that it
can be used with a NOWAITgradient.

Example.

#include "sgl.c"
pulsesequence()

{

double nloops,duration,level;

int vnw = v1; I* Real-time variable for nowait loop */
int vaw_ctr =v2; [* Real-time variable for nowait loop */
init_mri();

nloops=100; duration=1; level=10.0;

obl_shapedgradient("mygrad"”,duration,0,level,0,NO WAIT);

nwloop(nloops,vnw,vnw_ctr); /* nwloop does initval(nloops,vnw); */
I[* Pulse sequence statements lasting 10 ms go here */

endnwloop(vnw_ctr); I* End nowait loop */

}

Implications of seqcon settings

The standard prescription of loops in a sequence is

#include "sgl.c"
pulsesequence()
{
int vne = v1, vne_ctr =v2,vns =v3,vns_ctr = v4;
int vnv = v5, vnv_ctr = v6, vnv2 = v7, vnv2_ctr = V8;
init_mri();
peloop2(seqcon[3],nv2,vnv2,vnv2_ctr); /* Start 2" phase encode loop */
peloop(seqcon[2],nv,vnv,vnv_ctr); /[* Start phase encode loop */
msloop(seqgcon[1],ns,vns,vns_ctr); /* Start multi-slice loop */
initval(ne,vne); I[* Initialize vne */
loop(vne,vne_ctr); I* Start multi-echo loop */
I* acquisition of echo */
endloop(vne_ctr); I* End multi-echo loop */
endmsloop(seqcon[l],vns_ctr); /* End multi-slice loop */
endpeloop(seqcon[2],vnv_ctr); I[* End phase encode loop */
endpeloop(seqcon[3],vnv2_ctr); I* End 2" phase encode loop */
}

seqcon = ‘cccen'

The looping order is the order in the sequence, then array elements:

echo, multi-echo, multi-slice, phase encode, 2" phase encode, array elements
J

'

same data block different data blocks

seqcon = '‘cscen'

The looping order depends on the parameter order in the array string:

echo, multi-echo, phase encode, 2" phase encode, multi-slice, array elements
L J | > < J

'

same data block different data blocks

" o
echo, multi-echo, phase encode, 2" phase encode, array elements, multi-slice
l J 1 J

'

same data block different data blocks

seqcon = '‘cscsn'’

The looping order depends on the parameter order in the array string:

echo, multi-echo, phase encode, multi-slice, array elements, 2" phase encodeI
L I | > <

I

same data block different data blocks

¥ "¢
echo, multi-echo, phase encode, array elements, multi-slice, 2" phase encode
L 1l J

v '

same data block different data blocks

segcon = '‘csssn’

The looping order depends on the parameter order in the array string:

Iecho, multi-echoi Imulti-slice, array elements, phase encode, 2" phase encodeI
» <

same data block different data blocks

. ¥ o
Iecho, multl-echoi Iarray elements, multi-slice, phase encode, 2" phase encodeI

:

same data block different data blocks

seqcon = ‘ccssn'

Iecho, multi-echo, multi-slicel, array elements, phase encode, 2" phase encodeI
l

; v

same data block different data blocks

seqcon = 'ncsnn’

echo, multi-slice, array elements, phase encode -
L Il] Standard 2D multislice

' '

same data block different data blocks

segcon = 'nscnn’

Iecho, phase encodel, Iarray elements, multi-slice

'

same data block different data blocks

SSFP type 2D multislice

Segmentation, nseg and etl

Segmentation is typically performed with the looping structure in the Fast Spin Echo (fsems)
The parameter etl specifies the echo train length.

#include "sgl.c"
pulsesequence()

{
double nseg;
intvseg =vi,vms_slices =v2, vetl =v3 ;
int vseg_ctr =v4, vms_ctr =5, vetl_ctr = v6 ;
init_mri(); /* reads the echo train length etl */
nseg = nv/etl; /* Figure the number of segments */
initval(nseg,vseq);
peloop(seqcon[2],nseg,vseg,vseg_ctr); /* Start phase encode loop */
msloop(seqcon[1],ns,vms_slices,vms_ctr); /* Start multi-slice loop */
initval(etl,vetl); * Initialize vetl */
loop(vetl,vetl_ctr); I* Start multi-echo loop */
I* acquisition of echo */
endloop(vetl_ctr); [* End multi-echo loop */
endmsloop(seqcon[1],vms_ctr); * End multi-slice loop */
endpeloop(seqcon[2],vpe_ctr); I* End phase encode loop */
}

The setloop macro sets nf for one pass through the segmented loop for a profile.
Parameters nseg (number of segments) and etl (echo train length) are used.
nseg takes precedence, if it exists, such that etl = nv/nseg

No assumption is made in the setloop macro for how nf should be set for a full image.
That is left to the 'prep’ macro of the specific sequence.

Data Transfer to Host and nfmod

The default mode of data transfer is for the console to acquire each block of data and, once
acquisition of the data block is complete, transfer it across to the host.

There are two modes of acquisition that can be selected by the parameter dp
dp=y' Each data point is 32-bit float (4 bytes). This is the default
dp="n' Each data point is 16-bit int (2 bytes).

Each DDR has 64 Mb of memory for data.

Compressed loops can easily fill the DDR memory, e.g. a basic

256 x 256 matrix, 30 slices, 6 echoes, dp=y' — 2 x 256 x 256 x 30 x 6 x4 =94.4 Mb

The factor of 2 is for a pair of data points (real and imaginary)
The factor of 4 is for each data point being 4 bytes

Methods for alleviating the problem are:

1. Set a parameter nfmod to dictate how often traces of data should be transferred from
console to host.

2. Set a loop to be a standard loop.

3. Setdp='n'" (only saves a factor of 2).

nfmod

if parameter nfmod does not exist within a parameter set it can be created on the command
line with

create('nfmod','integer’)
nfmod sets the number of traces that should be acquired before data is transferred to the
host after which the DDR data memory can be reused.

nfmod must be a factor of the total number of traces in a block.

nfmod=1 has been tested fairly extensively with a good degree of success.
Using nfmod=1 requires no logic to ensure it is a factor the total number of traces in a block.

The major limitation in using nfmod is that it does not work if multiple transients are
averaged, which is often exactly what is required to achieve adequate SNR for large data
sets.

Averaging, il and bs

The parameter nt sets the number of transients to be acquired — i.e. the number of
repetitions or scans in the experiment.

By default each data block is averaged in the DDR of the console and then transferred to the
host before acquisition of the next data block starts.

The parameter bs can be used to periodically (every bs transients) transfer blocks of data
from the console to the host during averaging.

By setting bs='n" , block size storage is disabled, and data are stored on the host only when
averaging of the block is complete. If an acquisition is aborted prior to termination, the data
will be lost.

The interleave flag il controls experimental interleaving in arrayed experiments.
The default is for interleaving to be disabled (il='"n").

When interleaving is active (iI='y'), bs transients are acquired for each member of the
array, followed by bs more transients for each member of the array, and so on, until nt
transients have been collected for each member of the array. As such, il is only relevant if
bs is less than nt .

Multiple Receivers

When data is acquired from multiple receivers the data from each receiver goes into a
separate data block in the fid file. For acquisition of data using four receivers the fid file is
ordered as follows

File DDR1 |DDR2 |DDR3 |DDR4 |DDR1 |DDR2 |DDR3
Header |1 block | 1% block | 1% block | 1% block | 2™ block | 2" block| 2" block

Current Limitations
1. nfmod does not work for nt > 1
nfmod is useful for large data sets that are too big for the DDR memory.

Large data sets often require nt >1 to achieve adequate SNR.

2. nwloop functions can not be nested.

3. There is not a good mechanism to set the precedence of standard phase encode loops
amongst other array elements.

