
**
**

 VnmrJ / VNMR Parameter Handling
 by Rolf Kyburz, Agilent Technologies

**
**

 Last update: 2011-03-14

--

Contents:

 1. Introduction
 2. Parameter Trees
 3. Parameter Tree Precedences
 4. Parameter Groups
 5. Parameter Handling Utilities
 6. Related Articles from Agilent MR News

--

1. Introduction

Many of the problems that users have with VNMR have to do with the way VNMR
handles parameters. Unfortunately there is no complete explanation on
parameter handling in the VNMR manual, and there is also no "flow diagram"
that would indicate what happens to parameters within VNMR. This document was
created in an effort to help with questions dealing with VNMR parameters.
Should there be important omissions or things that are wrong or unclear,
please contact the author under
 rolf.kyburz@varianinc.com

The following text refers to VNMR - it was written when VNMR was the standard
Varian NMR software; however, the principles of parameter handling and storage
haven't changed in VnmrJ, therefore this text is still valid also for VnmrJ.

2. Parameter Trees

First about the parameter trees - VNMR knows four parameter trees; each of
them is stored in a separate disk file, and all of them have their particular
set of properties and behavior. As long as VNMR is running, they all are kept
in memory for speed reasons.

a) "systemglobal": this tree is stored in "/vnmr/conpar". Under normal
 circumstances this tree is read only once per session (when VNMR is started
 up), and never thereafter. "systemglobal" parameters (configuration
 parameters) can be changed "by hand" - just by entering a value, or with
 the command
 setvalue('<parametername>',value,'systemglobal')
 but that parameter value will usually be lost upon exiting VNMR, as
 "/vnmr/conpar" is NOT saved back on disk upon exiting VNMR. Usually, only
 "config" is used to change "/vnmr/conpar". That command will also update
 the "systemglobal" tree in the VNMR which called it - but for starting it
 will read the parameter values FROM THE DISK, even if "systemglobal"
 parameters have been changed temporarily. It is possible to force VNMR to
 read or write "/vnmr/conpar", using the commands
 fread('/vnmr/conpar','systemglobal')
 fsave('/vnmr/conpar','systemglobal')
 (the latter of course only works if you have write permission on the file
 "/vnmr/conpar").

b) "global": this tree is stored in "~/vnmrsys/global" ("systemdir+'/global'")

 and is also read in upon starting VNMR. Different from "/vnmr/conpar" it IS
 written back to the disk file upon exiting VNMR. This has some consequences
 for the user: it does NOT make sense to manipulate the disk file while VNMR
 is running - upon exiting VNMR will write back the copy that is kept in
 memory - unless you do
 fread(userdir+'/global','global')
 after the modification. A problem that has happened several times is the
 following: a user has not been careful, and the disk gets full while VNMR
 is running. When the user realizes that there is a problem, the first
 reaction often is, to exit and restart VNMR - which is exactly wrong! Upon
 quitting VNMR will erase and overwrite the "global" parameter file: in this
 situation it will very likely be able to erase the parameters, but then it
 may not be able to complete the write-back operation! this leaves a set of
 corrupted parameters - an incomplete file - on the disk. Upon restarting
 the user will then will then get error messages such as
 parameter wcmax not found
 and the like - a symptom for missing "global" parameters. In this situation
 even experienced users often do the wrong thing: they substitute the
 corrupted file with the intact backup copy in "/vnmr/user_templates" while
 VNMR is running! That's of course bad, as a) VNMR will not automatically
 read those parameters (unless it is started or forced to do that using
 fread) - the error messages therefore persist - and b) upon exiting VNMR
 will of course write back the incomplete parameter set it has kept in
 memory, and with the next restart one gets the same error messages
 again! There is a two simple rules to avoid that:
 a) if the disk is full, FIRST free up some space on the disk BEFORE
 exiting VNMR
 b) if you need to substitute "~/vnmrsys/global", ONLY do it while VNMR
 is NOT running!

c) "current": this is the parameter tree you are looking at through "dg" etc.;
 your "working parameter set". Over 99% of the parameter changes occur in
 this tree. It is experiment-related and stored in "curexp+'/curpar'". As
 long as you are working in a particular experiment, its "current" parameter
 tree (and also the "processed" tree, see below) is buffered in memory, and
 it is written back to the disk either upon quitting VNMR "regularly", as
 well as when joining a different experiment. You can force the experiment
 parameters to be written to the disk by using the command "flush" (this
 will also cause the "processed" and "global" trees to be written to the
 disk. You could also force the system to read "current" parameters from the
 disk using
 fread(curexp+'/curpar')
 For the same reasons as with "~/vnmrsys/global" it is recommended NOT to
 manipulate the disk files within the active experiment, but rather to join
 a different experiment first. You can READ the experiment files from the
 disk AFTER calling the "flush" command. While setting up new experiments,
 or even after starting an acquisition the disk files often have NOTHING to
 do with the "current" data, and it is absolutely essential to give VNMR a
 chance to write back the data it keeps in memory, otherwise the files in
 the current experiment may be inconsistent or even corrupted! For that
 reason it is essential that you quit VNMR by using the "Exit VNMR" button,
 or by typing "exit", rather than by just pulling "EXIT" from the desktop
 menu while VNMR is still running: this would kill all applications running
 in the windowing environment, including VNMR - and in such a situation VNMR
 has no chance to save its parameters before exiting.

d) "processed": this is the second, experiment-related parameter set. Its
 basic handling (buffering, reading/writing from/to the disk) is the same as
 with the "current" tree; the disk file is "curexp+'/procpar'". The
 principal purpose of this parameter tree is, to maintain/guarantee
 consistency between the experiment parameters and the acquired and/or
 processed data in that same experiment, see also below (parameters can be
 changed after typing "go", or after the acquisition - after typing "wft"
 the "current" tree will always be reset to the "proper" parameter values).
 To read in the "processed" tree by command you can use
 fread(curexp+'/procpar','processed')
 to force a write-back operation you can use "flush" (or "fsave", but that
 requires the same arguments as "fread").

3. Parameter Tree Precedences

The precedence among the parameter trees is
 current > global > systemglobal
This normally is irrelevant for standard operation, as it is a very specific
set of parameters that is stored in "/vnmr/conpar" ("systemglobal" tree), and
another, very specific set of parameters is stored in the "global" tree. BUT:
it does mean that if you incidentally create a local parameter (in the
"current" tree) with the name of a "global" or "systemglobal" parameter it
will OVERRIDE that other parameter! Conclusion:
 - DON'T duplicate "systemglobal" parameters in either the "global" or
 the "current" tree, and
 - DON'T duplicate "global" parameters in the "current" tree unless you
 know what you are doing!

4. Parameter Groups

Among the parameter characteristics (as defined through one of the numeric
parameter qualifiers, see the user programming manual) is the parameter group:
each parameter belongs to a certain functional group, as described in the
manual for the "setgroup" command:
 - acquisition
 - processing
 - display
 - spin simulation
 - sample
 - "all" / "none" (not used)
this group determines how the parameters are handled by VNMR:
 - upon typing "go", ONLY the ACQUISITION parameters from the "current"
 experiment (plus of course the configuration parameters) are transferred to
 the pulse sequence. Even if a parameter "delta" or "delta1" exists in the
 "current" tree - it is a display parameter and will not be available in a
 pulse sequence:
 getval("delta")
 will return 0.0 or an error message! So if you don't "see" a parameter in a
 pulse sequence, check whether it really is an acquisition parameter!
 - only acquisition parameters will affect "array" and "arraydim" when they
 are arrayed (and even that only if protection bit 256 (bit #8) is not
 set).
 - upon typing "go" the acquisition parameters (only) are copied from the
 "current" tree into the "processed" tree.
 - upon processing, the "processing" parameters are copied from the "current"
 tree to the "processed" tree, and - after the FT - both the "acquisition"
 and the "processing" parameters are copied BACK from the "processed" tree
 into the "current" tree. Even when you change "acquisition" parameters
 after the acquisition: "wft" will always restore the "proper" parameters
 for the current data set.
 - the display parameters are always taken from the "current" tree.
 - "dg" ALWAYS looks at the "current" tree ONLY.
 - direct parameter handling (e.g., "d1=1") ALWAYS refers to the "current"
 tree only.
 - "ap" / "pap" takes the "acquisition" parameters from the "processed" tree
 to ensure a parameter printout that is consistent with the spectrum that is
 being plotted. As a little sideline: it is a known bug that decisions in
 the "ap" display template are based on parameter values that are taken from
 the "current" instead of the "processed" parameter tree!

5. Parameter Handling Utilities

Apart from the direct parameter entry facilities, VNMR has a complete set of
parameter manipulation tools:
 - parameters can be created, destroyed, displayed and manipulated IN ANY TREE

 using the commands
 create
 destroy
 setgroup
 setprotect
 setlimit
 setvalue
 setenumeral
 display
 paramvi / paramedit
 Note that "setvalue" bypasses any internal parameter protection (protection
 bits, parameter limits, enumerals) and should be used with caution - but it
 is THE tool to set a parameter in the "processed" tree:
 setvalue('ct',128,'processed')
 "paramvi" also is to be used with caution, as it gives the user any chance
 to screw the parameter format.
 - entire parameter groups can be copied or even destroyed using
 groupcopy
 destroygroup
 the latter of course is to be used with caution - there will very rarely be
 a need for that command at all. If the entire "processed" parameter tree
 needs to be fixed / manipulated it is often easier to change / set up the
 parameters in the "current" tree, and then to replace an entire group of
 the "processed" tree using e.g.:
 groupcopy('current','processed','acquisition')
 (note that the argument "'all'" currently doesn't work with the groupcopy
 command).
 - the command "prune" permits removing any extra parameter from the "current"
 tree that is NOT also defined in the specified parameter disk file.
 - entire parameter trees can be saved to disk or read from a disk file using
 fsave
 fread
 - entire parameter SETS (together with the text file) can be saved on disk
 and restored using
 svp
 rtp / rt
 Note that "svp" / "rtp" work with the CURRENT parameter tree, whereas "svf"
 (and "rt" on a disk file) will work with the PROCESSED parameter tree. Note
 also that "rtp" can also be used on "*.fid" files, where it only reads the
 parameter part of the file into the "current" tree. The command "mp" which
 moves parameters between experiments only works with the "current" trees of
 the specified experiments..
 - with the command
 flush
 the entire set of buffered parameters (and data) can be forced to be
 written onto the disk without quitting VNMR or joining a different
 experiment.

The one thing that is missing from VNMR is a utility to
 - display ALL parameters - even those not shown by any "dg" / "ap" template,
 - list ENTIRE parameter groups or even parameter trees in an easy-to-read,
 alphabetic (one parameter per line) format
 - compare two parameter sets and produce easy-to-read output
This is provided in the on-line user library: just send an e-mail message to
 userlib.request@varianinc.com
with a line
 bin/parhandler
in the message body. this item hasn't yet been incorporated into the user
library directory that is distributed with the VNMR software.

The actual parameter disk file format is rather convoluted and is described in
the User Programming Manual. It is not recommended to manipulate parameter
disk files directly - rather use the commands described above.

--

6. Related Articles from Agilent MR News
==

 1994-07-07:
 Using Global Parameters Creatively
 1994-12-09:
 Changing Configuration Parameters
 1995-03-26:
 New Parameter Handling Tools
 1997-02-11:
 Parameter Units in VNMR 5.3
 1997-05-02:
 Fixing Experiment Parameters After a VNMR Upgrade
 Does Fixpar Fix All Parameters?
 1997-09-27:
 What To Do When Global Parameters Are Missing
 1997-11-21:
 How To Avoid Parameter Changes Upon "rt"
 1998-01-09:
 Printing The VNMR Configuration Parameters
 1998-01-30:
 A Peculiarity With the "groupcopy" Command
 Negative Parameter Step Sizes
 1998-08-21:
 Defining Parameters for R.F. Power Levels
 1998-08-28:
 Parameters With "Indirect" Limits
 1999-04-08:
 Reading VNMR Parameter Files Within a UNIX Shell
 2003-10-17:
 MAGICAL Tricks - Moving Single Parameters Between Experiments
 2003-12-13:
 Power Handling Parameters in VNMR / VnmrJ
 2005-08-11:
 Acquisition With Conditional Processing
 2006-10-26:
 Allowed "sw" Settings vs. Spectrometer Architecture
 A Potential Trap With "go" After "df" or "wft"
 A Mysterious Referencing Issue and the "sw" Parameter
 2006-12-05:
 Changes to Configuration Parameters
 Configuration Parameters, VnmrJ Viewports, and Background Processing
 2007-02-02:
 Using "setvalue" on Arrayed Parameters
 2007-02-26:
 Documentation Amendment for NMR Systems With 1 KWatt Amplifiers
 2007-10-06:
 The "probeconnect" Parameter
 Using the "probeconnect" Parameter Under VnmrJ 2.1B
 2009-07-17:
 Undoing VnmrJ Commands / Actions?
 Undoing Parameter Changes?
 Restoring Parameter Limits
 2009-08-19:
 Parameter Hierarchy in VnmrJ - Reminder and Follow-Up
 Can Parameter Values be Enforced?
 2009-09-03:
 Potential Issue With Fetching Parameter Values Into a Pulse Sequence
 2011-03-14:
 Little Known Tools for Array Handling in MAGICAL

--

1994-07-07:

USING GLOBAL PARAMETERS CREATIVELY:

 As you know, VNMR includes a series of "global" parameters which are common
to all the experiments for a particular user. The standard parameters which
exist are things like "plotter", "lockpower", etc. However, nothing prevents
you from creating new global parameters for your own use:
 create('gr1','real','global')

 create('gn1','string','global')
 Having such general purpose parameters, you can use them to transfer
parameters _between_ experiments. For example,
 gr1=rfl gr2=rfp jexp2 rfl=gr1 rfp=gr2
would transfer referencing from one experiment to another.
 A second interesting use for such a parameter is to save an array. Let's say
you typed in a complicated array of d2 values. You want to use the same array
again, but just for a second you want to set d2=0. Before doing so, type
gr1=d2 [yes, you can do this for arrayed parameters and it works]. Now set
d2=0, do your experiment, and then d2=gr1 restores the array as you desire.
One catch - whenever you set gr1 to be a series of values (an array), it sets
the parameter array='gr1'; you then need to reset array to '' (or whatever is
appropriate).
 [Agilent MR News 1994-07-07]

1994-12-09:

CHANGING CONFIGURATION PARAMETERS

 It is well known among VNMR users that /vnmr/conpar can only be changed
through "config". Parameters CAN be changed "manually", though, e.g. by typing
 vttype=0
but this will only affect the parameters in memory, and not /vnmr/conpar.
If "config" is called after such a change, it will NOT reflect the parameter
settings stored in memory, but it will rather read in /vnmr/conpar FROM THE
DISK - that makes you believe that vttype=0 does not work! What may be even
more confusing is, that upon quitting with "Exit & Save", config not only
stores its own parameters in /vnmr/conpar, but also causes VNMR to re-read
the configuration parameters from /vnmr/conpar, i.e., upon calling config
any temporary parameter changes are LOST and would have to be re-entered!
 Actually, there is a way to store "manual" parameter changes in
/vnmr/conpar, if you have permission to overwrite /vnmr/conpar (usually vnmr1
only):
 fsave('/vnmr/conpar','systemglobal')
This should NOT be used routinely under normal circumstances (it is used in
the setlockfreq macro).
 [Agilent MR News 1994-12-09]

1995-03-26:

NEW PARAMETER HANDLING TOOLS:

 Have you ever been fed up with looking for "hidden" parameters? Did you
ever have to use printouts to compare two different parameter sets (e.g.:
parameters in two different experiments, or parameters in an experiment with
those in a disk file)? Have you ever had a hard struggle trying to use the
"diff" command to find the difference between two parameter sets? [Whoever
has tried this knows that "diff" is virtually useless, as the VNMR parameter
format uses three or more lines for each parameter, "diff" therefore would
show the difference between the values, but not the associated parameter name!
Another problem is, that the parameter sorting in VNMR is never exactly the
same (and certainly not fully alphabetical).] In "bin/parhandler" the on-line
user library now contains new parameter handling tools that allow listing
COMPLETE parameter sets in a simple - one line per parameter - format (either
all parameters, or just acquisition, processing, display, ... parameters).
Additional tools permit printing out complete parameter difference tables
(between experiments and/or disk files), which make parameter comparison a
very simple task! The pardiff macro never "forgets" parameters!
 [Agilent MR News 1995-03-26]

1997-02-11:

PARAMETER UNITS IN VNMR 5.3:

 In VNMR 5.3, the units are no longer "built into VNMR", but they are all
completely user-definable. The "standard" units "p", "d", and "k" are defined
in the bootup macro (/vnmr/maclib/bootup) which in VNMR 5.3 contains the
following three lines:
 unit('p','ppm','reffrq')
 unit('d','ppm','dfrq')

 unit('k','kHz',1000)
If on your system the unit suffixes (sw=10p etc.) don't work, then it most
likely is because you have a local "bootup" macro. As noted in VMR News on
1996-11-20, you should NOT have a local bootup macro: customized actions in
the bootup macro should rather be moved to a local macro "login". If you want
to have a customized "bootup" macro (because you don't want to customize every
account), then you must customize the VNMR 5.3 version of the "bootup" macro -
don't use an older version of that macro!
 [Agilent MR News 1997-02-11]

1997-05-02:

FIXING EXPERIMENT PARAMETERS AFTER A VNMR UPGRADE:

 The macro "fixpar" has got two tasks:
 - it ensures that parameters that are loaded into VNMR are consistent with
 the local soft- and hardware configuration, and
 - if a parameter set was generated with an earlier VNMR release, it calls
 "parfix" to make it compatible with the current software release (every
 version of VNMR comes with its own version of the "fixpar" and "parfix"
 macros).
 The macro "fixpar" is called with every "rt" or "rtp" (this includes
"setup", loading through "files", etc.): parameter updating is implicit and
automatic - with one exception: the parameters in the current experiments
for every user are NOT updated. To cover this as well, every user would
need to call "fixpar" in EVERY local experiment after a VNMR upgrade. Tom
Frenkiel (MRC Mill Hill, London, U.K.) has proposed a method that makes this
automatic. We first store the following macro in EVERY user's local maclib:
 "fixexp - fix experiment parameters"
 fixpar
 $ix=2 $exp=''
 repeat
 format($ix,1,0):$exp
 exists(userdir+'/exp'+$exp,'directory'):$e
 if $e then
 jexp($ix) fixpar
 endif
 $ix=$ix+1
 until $ix>9
 jexp1
This calls "fixpar" in every defined experiment. We now add the following
segment to the bottom of /vnmr/maclib/bootup:
 if $bg=0 then
 exists(userdir+'/maclib/fixexp','file'):$e
 if $e then
 fixexp
 delete(userdir+'/maclib/fixexp')
 endif
 endif
 This calls "fixexp" ONCE by the bootup macro for every user, then the fixexp
macro is automatically removed (this can only be done in foreground, as
joining experiments is not permitted in background).
 [Agilent MR News 1997-05-02]

DOES FIXPAR FIX ALL PARAMETERS?

 With the "fixpar" macro we ensure that when you type "go" your parameters
are complete and comply with your spectrometer hardware. This not only covers
the case of a simple parameter setup: consider the case where you want to
repeat an experiment that you have performed under an earlier VNMR release, or
on a different type of spectrometer: you can simply retrieve parameters from
an existing FID using "rtp", check the power levels and pulse width settings,
and type "go".
 But there are cases where you DON'T want the parameters to be adjusted: when
you process existing data, you want VNMR to indicate what parameters were used
for the acquisition of your data - and those parameters may be incompatible
with your software, maybe even dangerous for your hardware configuration! To
give you an example: when you retrieve an old FID, "fixpar" is called, and
your CURRENT parameters are updated (such that you could redo the experiment).
But when you type "df" or "wft" (any command that accesses the FID itself),

the acquisition parameters from the PROCESSED tree are copied into the current
tree and may now be incompatible with your setup! To avoid such problems, it
is recommended not to use "rt" to retrieve parameters for acquisition.
 "fixpar" also does NOT cover experiment subfiles (as created by combination
macros such as hcosy, hccorr): these subfiles are normally used for processing
only, and not to set up an experiment.
 [Agilent MR News 1997-05-02]

1997-09-27:

WHAT TO DO WHEN GLOBAL PARAMETERS ARE MISSING:

 Even though we have taken almost every possible measure to prevent the
global parameters from getting corrupted (such as when the disk is full when
exiting VNMR), we still occasionally get reports about problems with this
parameter file (even with VNMR 5.3B) see also bug report global.5101. Typical
symptoms of a corrupted global file are messages such as
 variable "lastmenu" does not exist.
upon starting VNMR, and in most cases you will not even get the second row
menu bar. In such an instance, don't try creating the missing VNMR parameter -
you will find that many more are missing as well! Instead, EXIT VNMR (type
"exit" on the VNMR command line), then type
 cp /vnmr/user_templates/global ~/vnmrsys
and then restart VNMR (VNMR MUST NOT BE RUNNING when you copy in the parameter
file). After that, you can restart VNMR. You will need to re-select the
printer and plotter, as your global parameters will now be reset to their
default values. It would be helpful to keep a backup copy of your current
global parameter set (~/vnmrsys/global).
 One of the key points for avoiding such situations (at least with VNMR 5.1
and earlier) is, to avoid "disk full" situations: periodically use "df -k" to
ensure that there is enough free space on your disk!
 [Agilent MR News 1997-09-27]

1997-11-21:

HOW TO AVOID PARAMETER CHANGES UPON "RT":

 Whenever you retrieve a data file, the parameters for the new FID are copied
both into the "current" and into the "processed" parameter trees. After that,
the "fixpar" macro is called, which ensures that the current parameter tree
is in accordance with your instrument and software configuration. This seems
to be against all rules of GLP - but the big advantage of this mechanism is
that after an "rt" you can basically re-acquire a spectrum, even if you are
retrieving data that were acquired with earlier software, or even with a
different spectrometer! We still maintain GLP requirements, in that after a
"df", "wft" or "wft2d", the acquisition parameters from the processed tree are
copied into the current parameter tree. Now, the parameters that you see are
those used for the acquisition - however, you may not be able to type "go",
if you have either changed the software or if you have recalled data from an
other spectrometer!
 On a datastation, the "fixpar" parameter updating is often undesirable.
Fortunately, as of VNMR 5.3B, "rt" is a macro. We can therefore simply add the
following lines at the end of the file /vnmr/maclib/rt:
 if system='datastation' then
 if arraydim=1 then
 df dg
 else
 groupcopy('processed','current','acquisition')
 dg
 endif
 endif
This doesn't prevent fixpar from altering the current parameter tree, but it
copies the processed tree over the current one immediately thereafter.
 [Agilent MR News 1997-11-21]

1998-01-09:

PRINTING THE VNMR CONFIGURATION PARAMETERS:

 The VNMR "config" window includes a "Print" button. Note that this button

only works if you have a printer with the name "lp" ("config" does not look up
which printer is selected in VNMR, nor does it check whether there is a LPDEST
environment variable and what its value is). If you don't have a printer named
"lp", you should use the procedure that is described in the VNMR Command and
Parameter Reference Manual: first exit (and save) "config", then make sure you
have selected the right printer in VNMR and type
 printon config('display') printoff
 [Agilent MR News 1998-01-09]

1998-01-30:

A PECULIARITY WITH THE GROUPCOPY COMMAND:

 Some users (including the editor) have mis-interpreted the 'all' option of
the groupcopy command: 'all' does NOT copy all parameters, but rather the
parameters of the (rarely used) group named 'all' (i.e., parameters that would
be associated with all parameter groups). Valid group types include 'sample',
'acquisition', 'processing', 'display', 'all', and 'spin'. In order to copy
all parameters from one tree to another you need to call groupcopy for each of
these parameter groups, including 'all', 'spin', and 'sample'. In most cases
it is sufficient to copy the most commonly used groups 'acquisition',
'processing', and 'display'.
 [Agilent MR News 1998-01-30]

NEGATIVE PARAMETER STEP SIZES:

 The limits (maximum, minimum) and the step size of any VNMR parameter can be
displayed with
 display('<parametername>')
A few parameters (spectral widths and Fourier numbers) have negative stepsize
values - what does this mean?
 If parstep is less than -1, then the corresponding parameter is interpreted
as a Fourier number, which must be set to a number which is a power of 2. For
fn, the value is set to -2, although any value below -1 will give the same
behavior.
 If the value of parstep is between -1 and 0, the parameter is interpreted as
a spectral width parameter. Here, the set of possible values consists of the
inverse of the dwell times that the pulse programmer can execute, i.e., it
depends on the timing resolution of the pulse programmer. The latter can be
taken from the step size of the parameter (12.5, 25, or 100 nsec). The better
the timing resolution is, and the smaller the sw parameter is, the smaller the
steps between possible values for sw. An example for UNITY INOVA systems: at
the upper end, spectral windows can be 5e6, 4705882.4, 4444444.4, 4210526.3,
4e6 Hz, etc.; at 100 KHz the step size is approximately 125 Hz, at 10 KHz it
is around 1.25 Hz, and at sw=1000 and less the step size is well below 0.1 Hz.
 [Agilent MR News 1998-01-30]

1998-08-21:

DEFINING PARAMETERS FOR R.F. POWER LEVELS:

 When defining new parameters for power level control, users usually just use
a command such as
 create('satpwr','integer')
This is fine for entering the power level, however, that new parameter does
not have proper limits from this command. The probe protection software does
NOT work properly if values BELOW THE MINIMUM are entered (e.g.: satpwr=-20).
One starts getting power levels close to maximum output when entering values
just below the minimum for the hardware (see also the bug report power.6101).
 We strongly recommend defining appropriate limits for parameters that are
used for r.f. power levels. For power levels on the observe channel this can
be done with
 setlimit('satpwr',17)
For the decoupler channels the limit index is different:
 setlimit(<parametername>,9) "first decoupler channel"
 setlimit(<parametername>,18) "2nd decoupler"
 setlimit(<parametername>,21) "3rd decoupler"
This way, the parameter limit will reflect the limits as set up via config for
each of the r.f. channel, and in case of high power levels, the hardware will
be protected by the probe protection software. It may be even safer to use

lower maximum limits for parameters used for presaturation or decoupling power
levels. This can be done with
 setlimit('satpwr',40,-16,1)
for systems with 79 dB attenuator, and with
 setlimit('satpwr',40,0,1)
for older systems with 63 dB attenuator. We strongly recommend adding such
lines to pulse sequence setup macros such as /vnmr/maclib/cyclenoe.
 [Agilent MR News 1998-08-21]

1998-08-28:

PARAMETERS WITH "INDIRECT" LIMITS:

 VNMR parameters are equipped value entry limits, in order to force operator
or MAGICAL entries into the allowed range. Even without explicitly specified
limits, there are at least numeric limitations (given by the maximum / minimum
32-bit floating point number, -9.99999984307e17 .. +9.99999984307e17). String
parameters have length limitations (given by the size of the allocated memory
inside VNMR). Narrower limits and a defined stepsize can be specified using
the "setlimit" command, e.g.:
 setlimit('satpwr',40,-16,1)
With some parameter types (delay, frequency, integer, and pulse) narrower
limits are automatically defined when defining the parameter using "create".
 Many acquisition parameters have limits that depend on the spectrometer
hardware, especially the pulse programmer. It would be impossible for "fixpar"
to correct all parameter limits based on conpar, every time a parameter set is
read in. Instead we have created the mechanism of "indirect" parameter limits.
Parameters with indirect limits have the protection bit 13 (value 8192) set.
This can be done using
 setprotect('<parametername>','on',8192)
If this bit is set, then the limit fields in the parameter definition are no
longer the actual numeric limits themselves, but rather indices into three
arrayed parameters parmax, parmin, and parstep. These parameters are part of
/vnmr/conpar and are set up by the config program. This way all parameters
with indirect limits have their limits automatically adjusted by config.
 In VNMR 6.1A, parmax, parmin and parstep are arrays of 21 numeric values.
Here is a list of what the various limit values are used for:
 Index max/min/stepsize (typical) Typical use
 1 500/0/0.1 sc
 2 840/5/0.1 wc
 3 500/0/0.1 sc2
 4 520/0/0.1 wc2
 5 5e+06/100/-1.25e-08 sw
 6 256000/1000/1000 fb
 7 100000/-100000/0.1 tof (obsolete!)
 8 99000/-99000/0.1 dof (obsolete!)
 9 49/-16/1 dpwr, dhp
 10 39/0/1 dlp
 11 2e+06/1/1 dmf
 12 500/-500/1 loc
 13 8190/0/0.0125 p1,pw,pw90,rof1,rof2,alfa
 14 8190/0/1.25e-08 d1,d2,d3
 15 1e+06/0/0.0125 pw,p1,tau (solids NMR)
 16 100000/-100000/0.1 dof2 (obsolete!)
 17 63/-16/1 tpwr
 18 49/-16/1 dpwr2
 19 32767/-32767/1 (shim gradient DAC values)
 20 100000/-100000/0.1 dof3 (obsolete!)
 21 49/-16/1 dpwr3
The "create" command automatically uses indirect limits for pulses (13) and
delays (14). Beyond that, you can turn on indirect parameter limits using the
setlimit command, e.g.:
 setlimit('satpwr',9)
If you only specify one limit parameter, the setlimit (as of VNMR 5.1) takes
this as an index for all three limits. The above command is equivalent to
 setlimit('satpwr',9,9,9)
 setprotect('satpwr','on',8192)
The limits for tof (7), dof (8), dof2 (16) and dof3 (20) are marked as
obsolete: since many releases, frequency offsets can be arbitrarily big, see
also VMR News, 1997-11-14. You can deactivate indirect parameter limits

simply by entering explicit limits, e.g.:
 setlimit('tof',1e9,-1e9,0.1)
 You can display all properties (including the value(s), limits, and
protection bits) of a parameter using the command
 display('parameter_name'<,'parameter_tree'>)
where 'parameter_tree' is one of 'current' (the default parameter tree),
'processed', 'global', and 'systemglobal'.
 Note that the parameters parmax, parmin and parstep are part of /vnmr/conpar
and can only be permanently altered by vnmr1!
 [Agilent MR News 1998-08-28]

1999-04-08:

READING VNMR PARAMETER FILES WITHIN A UNIX SHELL:

 Reading parameter files from a UNIX shell script or a C program is somewhat
non-trivial, because VNMR stores parameters on multiple lines, e.g.:
 bs 7 1 32767 0 1 2 1 0 1 64
 1 16
 0
 axisf 4 2 4 0 0 4 1 0 1 64
 1 "s"
 4 "m" "n" "s" "u"
Every parameter is stored on at least 3 lines (the actual values may be spread
over multiple lines in arrayed parameters): the first line contains the name
of the parameter and its characteristics (see also section 5.4 of the VNMR
User Programming Manual), the second line contains the number of values (1 for
non-arrayed parameters), the last line contains enumerative values.
 This means that you cannot simply take "grep" to extract the value of a
specific parameter from a VNMR parameter file. Fortunately, there is awk /
nawk! To read the "system" parameter from /vnmr/conpar, you could use
 vnmr1 - 1> nawk '/^system / {getline; print $2}' < /vnmr/conpar
 "spectrometer"
Note the syntax in the matching string: by preceding the pattern with a caret
(^) we only pick lines that start with the matching string; the blank after
the string excludes longer parameter names that start with "system". The
"getline" in the "nawk" string skips to the second line, where we pick the
second token - the parameter value. You can of course also directly set a
shell variable with the parameter value, and we can use "sed" to remove the
double quotes from string values (this example is for Bourne shell scripts):
 cd /vnmr
 system=`nawk '/^system / {getline; print $2}' < conpar | sed 's/"//g'`
For arrayed parameters, this would of course only return the first value.
 Alternatively, you could download and install "bin/parhandler" from the
user library. This contribution contains a utility "listparam" that prints
VNMR parameters in a simple, 1 line-per-value format, which can be used as
follows:
 system=`listparam /vnmr/conpar | awk '{print $2}' | sed 's/"//g'`
 [Agilent MR News 1999-04-08]

2003-10-17:

MAGICAL TRICKS - MOVING SINGLE PARAMETERS BETWEEN EXPERIMENTS:

 There are several commands that allow moving data or parameters between two
VNMR experiments:
 - "mf" moves the FID (with the associated parameters, of course)
 - "mp" moves the parameters ("expN/curpar")
 - "md" moves stored display settings ("expN/s1" .. "expN/s9", if present)
 - "mt" moves the text ("expN/text"); for VNMR releases prior to VNMR 6.1C,
 "mt" is available with the contribution "maclib/mz" from the on-line user
 library; for the current version visit "For VnmrJ and VNMR Users" at
 http://www.varianinc.com/products/nmr/apps/vnmrusers.html
 - "mz" ("maclib/mz" from the Agilent MR User Library, see above) moves
 integral reset points (the parameters "lifrq" and "liamp" from the current
 parameter tree)
Sometimes in a macro context one just would like to transfer single parameters
between two experiments. The typical mechanism used for this is
 $value=par jexp(N) par=$value
where "par" would be the name of a VNMR parameter, such as "d1". Note that if

"par" is arrayed, this will transfer the entire array - however, if "par" is
an acquisition parameter, the above mechanism will NOT set "arraydim". In
general, if you enter an arrayed parameter from another arrayed parameter in
one command, this does NOT cause "arraydim" to be adjusted, i.e., calling
"d1=d1" would not correct the situation. The solution is to use "calcdim":
 $value=par jexp(N) par=$value calcdim
One user wanted to transfer the value of "llfrq", i.e., the frequencies of a
line listing (as created by "nll", "dll", "dpf", or "ppf") from one experiment
to the other. The construct
 $llfrq=llfrq jexp(N) llfrq=$llfrq
failed because "llfrq" did not exist in the target experiment: this parameter
is NOT "mandatory" - it is created by the above commands if it doesn't exist
yet. The solution therefore would be to use
 $llfrq=llfrq jexp(N) nll:$dummy llfrq=$llfrq
Superficially, this looks correct ("calcdim" is not needed, because "llfrq" is
a display parameter) - however, line listings always consist of the frequency
part ("llfrq") and the associated amplitude information ("llamp") - both
parameters have the same number of elements. The above construct sets "llfrq",
but leaves "llamp" untouched, leading to a potentially inconsistent situation.
It would be a good idea also to transfer "llamp", even though the amplitude
information is not needed (and most likely inappropriate!) in the target
experiment:
 $llfrq=llfrq $llamp=llamp jexp(N) nll:$dummy llfrq=$llfrq llamp=$llamp
For the same reason, the "mz" macro (see above) moves "lifrq" (the integral
reset points) together with the integral values ("liamp").
 If in your macro you already are "in" the target experiment you could also
use "rtv" for the parameter transfer:
 rtv(userdir+'/expN/curpar','llfrq','llamp')
This works irrespective of whether the parameter exists in the target
experiment or not ("rtv" is used as part of the "psgset" macro). In the case
of acquisition parameters, you also would need to add "calcdim" in order to
keep "arraydim" adjusted. Typically, "rtv" is used to retrieve parameters from
stored parameter sets (mostly from "parlib"); "rtv" on an experiment may not
be a good idea, unless you just left the source experiment in the same macro:
if you have two copies of VNMR running (foreground or background), the source
experiment could be an active experiment, in which case "curpar" may not
correspond to the real contents of that experiment. In our opinion, the
"traditional" method above (using "jexp" and local variables) is preferable.
 [Agilent MR News 2003-10-17]

2003-12-13:

POWER HANDLING PARAMETERS IN VNMR / VnmrJ:

 Both the UNITY INOVA and the MERCURYplus use a very similar, "dual power
handling parameter concept", except that they don't linearize the power
attenuator values:
 - one set of parameter ("tpwr", "dpwr", etc.) is in dB. It addresses a power
 attenuator between the transmitter board(s) and the power amplifier. Even
 though technically these are attenuators (i.e., more attenuation means less
 power), the power parameters are set up such that a value of 63 gives
 maximum output, while 0 (for 63 dB attenuators) or -16 (for 79 dB
 attenuators) yield minimum r.f. power output: more means more power (and
 hence potentially more danger for both the probe hardware and the sample),
 which seems better from a psychological point-of-view than to talk about
 attenuation. Typically, power parameters are defined as integers - and if
 they weren't, the acquisition software would round off or truncate such
 parameters to integer values anyway. It is the nature of such logarithmic
 attenuators that even at the minimum setting the output is NOT zero, but
 just very small ("tpwr=-16" means that the output voltage is 8913 times
 lower than at "tpwr=63", assuming a completely linear amplifier).
 - a second set of parameters ("tpwrf", "dpwrf", etc., or "tpwrm", "dpwrm" in
 many solids NMR pulse sequences) addresses a linear r.f. power modulator
 that is located on the r.f. transmitter board. On the UNITY INOVA, the
 power modulator accepts values between 0 and 4095 - the power values at the
 output actually between 1 and 4096, i.e., also with the linear modulator,
 the minimum output is NOT zero - to obtain zero output we use transmitter
 gating (e.g., "xmtron()" and "xmtroff()").
See also Agilent MR News 1999-05-28 for related information and a comparison
between linear and logarithmic power scales. On the UNITY INOVA, both the

linear modulator and the power attenuator (in dB) take the same instruction
time when set via the pulse programmer (0.5 usec), but the linear modulator
is not only more practical for pulse shaping (because pulse shapes are usually
defined in linear amplitude units), it can also be controlled via a waveform
generator, in which case its output can be changed at a rate as fast as every
200 nsec. For information on the time requirements for setting r.f. power
attenuators and linear modulators on other instruments see section 2.12
"Internal Hardware Delays" in the manual "VNMR User Programming".
 [Agilent MR News 2003-12-13]

2005-08-11:

ACQUISITION WITH CONDITIONAL PROCESSING:

 VnmrJ / VNMR knows several types of conditional processing in connection
with data acquisition:
 - "wbs" processing occurs whenever the end of a block ("bs") of transients is
 reached - provided of course "bs" is active and smaller than "nt";
 - "wnt" processing occurs whenever "nt" scans are reached, i.e., at the
 completion of an increment in an arrayed or nD experiment;
 - "wexp" processing occurs at the completion of the entire experiment;
 - "werr" processing may be invoked when an acquisition errors is detected.
 - VnmrJ uses yet another type of conditional processing ("wdone"); this
 should be considered internal to VnmrJ - users should not need to deal with
 this option.
Such processing can be invoked in various ways:
 - When an acquisition is started with "go", NONE of the above conditional
 processing options are invoked; however, AFTER an experiment is started
 using "go", you can still activate conditional processing, using the
 COMMANDS "wbs", "wnt", "wexp", and "werr", e.g.:
 wbs('testsn') wexp('wft')
 and once such processing is invoked, it can also be disabled or altered,
 e.g., with
 wbs('')
 - Starting an experiment with "ga" is equivalent to
 go wnt('wft')
 (typically not a good idea with nD experiments!). Once the experiment is
 running, any conditional processing can still be invoked or altered
 - When you start an experiment with "au" (this is the command that is used in
 automation), the actions specified in the PARAMETERS "wbs", "wnt", "wexp",
 and "werr" are invoked, as appropriate, e.g.:
 wbs='testsn' werr='react' wexp='procplot' au
 and again, the COMMANDS "wbs", "wnt", "wexp", and "werr" can be used AFTER
 the "au" to disable or alter any conditional actions.
Typically, "nt" is a multiple of "bs", hence the completion of an increment
is at the same time the completion of the last block of "bs" scans; also, the
completion of the entire experiment is also the completion of the last
increment; this raises the question about the sequence of events at the
completion of an increment or of the entire experiment:
 - "wbs" processing is NOT done at the completion of an increment / FID.
 - "wbs" processing is NOT queued, i.e., while "wbs" or "wnt" processing is
 active, further "wbs" processing calls are suppressed. This means that with
 a small "bs" and lengthy "wbs" processing, the system may NOT perform "wbs"
 processing at every block.
 - The same applies to "wnt" processing for all but the last increment in an
 array or an nD experiment: with a very small "bs" or in arrays such as
 "nt=1,1,1,1,1,1,..." the system may not perform "wnt" processing for every
 increment / FID.
 - "wnt" processing is ALWAYS done at the completion of the last FID in an
 experiment - this call is queued, if necessary. This is then followed by
 "wexp" processing.
 - "wexp" processing is queued if necessary and is always performed, UNLESS an
 experiment is terminated by an error or an abort ("wexp" is then followed
 by "wdone" processing).
 - In the case of errors, "werr" processing is done - "werr" is queued if
 necessary (similar to "wexp" processing).
Thanks to Dan Iverson (Varian Palo Alto) for providing information for this
article.
 [Agilent MR News 2005-08-11]

2006-10-26:

ALLOWED "sw" SETTINGS VS. SPECTROMETER ARCHITECTURE:

 The vast majority of the numeric acquisition parameters have a finite range
of allowed values that is determined by the spectrometer hardware. Examples:
 - frequency parameters can only assume values in the range of the associated
 synthesizer (PTS, offset generator, decoupler modulator), and with a
 "granularity" (i.e., discrete values with a defined step size) that is also
 determined by that device;
 - all time-related parameters (delays, RF and gradient pulse durations) can
 be set
 - to zero,
 - to the minimum duration / time event that the pulse programmer or
 controller board can perform (100 nsec on UNITY INOVA and DirectDrive
 architectures, 200 nsec on older systems),
 - above that to time durations given by the timing resolution of the
 pulse programmer / controller board (100 nsec on GEMINI/GEMINI 2000,
 the MERCURY family and early VXR-S, 25 nsec on UNITY and UNITYplus
 systems, 12.5 nsec on the UNITY INOVA and DirectDrive architectures),
 - up to a maximum that is either given by the software driving the pulse
 programmer or controller board (above 1 hour) or by some safety limit
 (pulses are typically restricted to values up to about 8.2 msec)
These restrictions are easy to understand, and they pose virtually no problems
when moving parameters between architectures: the most prominent effect is
that the difference in the timing resolution or the frequency step size may
cause round-off effects when moving parameters from a newer or research
instrument to an older or a routine system.
 The parameters for the spectral window - "sw" for the direct observe
dimension, "sw1", "sw2", etc. for the indirect dimensions in nD experiments -
are different from this, and somewhat harder to rationalize: while the above
parameter types feature equally spaced values, on traditional spectrometer
architectures (prior to DirectDrive) "sw" and its nD equivalents have a set of
allowed values that is given by the INVERSE dwell time (the time between
sampling points) - and as a time event, dwell times are subject to the same
limits as other time events, see above. The maximum spectral window that a
pulse programmer can perform in theory is given by the inverse of the shortest
executable delay (10 or 5 MHz); beyond that, in the observe dimension there
are restrictions in the receiver / filter bandwidth which limit "sw" to 5 MHz
with wideband receivers on UNITY INOVA, or to 500 KHz with the standard UNITY
INOVA receiver, less on older and routine NMR spectrometers. There is no
receiver involved in the indirect dimensions, therefore these latter
restrictions don't apply there.
 The STEP SIZE is very small at the lower end, but growing substantially
towards the top end of the "sw" range. Here's an excerpt from the list of
possible values and their applicability (WB = wideband receiver):
 Dwell Time "sw" Applicability
 0.2000 usec 5000000.0 Hz UNITY INOVA (WB only)
 0.2125 usec 4705882.4 Hz UNITY INOVA (WB only)
 0.2250 usec 4444444.4 Hz UNITY INOVA (WB only)
 0.2375 usec 4210526.3 Hz UNITY INOVA (WB only)
 0.2500 usec 4000000.0 Hz UNITY INOVA (WB only)

 2.0000 usec 500000.0 Hz UNITY INOVA
 2.0125 usec 496894.4 Hz UNITY INOVA
 2.0250 usec 493827.2 Hz UNITY INOVA
 2.0375 usec 490797.5 Hz UNITY INOVA
 2.0500 usec 487804.9 Hz UNITY INOVA

 10.0000 usec 100000.0 Hz UNITY INOVA, UNITYplus, MERCURY
 10.0125 usec 99875.2 Hz UNITY INOVA
 10.0250 usec 99750.6 Hz UNITY INOVA, UNITYplus
 10.0375 usec 99626.4 Hz UNITY INOVA
 10.0500 usec 99502.5 Hz UNITY INOVA, UNITYplus
 10.0625 usec 99378.9 Hz UNITY INOVA
 10.0750 usec 99255.6 Hz UNITY INOVA, UNITYplus
 10.0875 usec 99132.6 Hz UNITY INOVA
 10.1000 usec 99009.9 Hz UNITY INOVA, UNITYplus, MERCURY

 20.0000 usec 50000.0 Hz UNITY INOVA, UNITYplus, MERCURY

 20.0125 usec 49968.8 Hz UNITY INOVA
 20.0250 usec 49937.6 Hz UNITY INOVA, UNITYplus
 20.0375 usec 49906.4 Hz UNITY INOVA
 20.0500 usec 49875.3 Hz UNITY INOVA, UNITYplus
 20.0625 usec 49844.2 Hz UNITY INOVA
 20.0750 usec 49813.2 Hz UNITY INOVA, UNITYplus
 20.0875 usec 49782.2 Hz UNITY INOVA
 20.1000 usec 49751.2 Hz UNITY INOVA, UNITYplus, MERCURY

 200.0000 usec 5000.000 Hz UNITY INOVA, UNITYplus, MERCURY
 200.0125 usec 4999.688 Hz UNITY INOVA
 200.0250 usec 4999.375 Hz UNITY INOVA, UNITYplus
 200.0375 usec 4999.063 Hz UNITY INOVA
 200.0500 usec 4998.750 Hz UNITY INOVA, UNITYplus
 200.0625 usec 4998.438 Hz UNITY INOVA
 200.0750 usec 4998.126 Hz UNITY INOVA, UNITYplus
 200.0875 usec 4997.813 Hz UNITY INOVA
 200.1000 usec 4997.501 Hz UNITY INOVA, UNITYplus, MERCURY

 1000.0000 usec 1000.000 Hz UNITY INOVA, UNITYplus, MERCURY
 1000.0125 usec 999.988 Hz UNITY INOVA
 1000.0250 usec 999.975 Hz UNITY INOVA, UNITYplus
 1000.0375 usec 999.963 Hz UNITY INOVA
 1000.0500 usec 999.950 Hz UNITY INOVA, UNITYplus
 1000.0625 usec 999.938 Hz UNITY INOVA
 1000.0750 usec 999.925 Hz UNITY INOVA, UNITYplus
 1000.0875 usec 999.913 Hz UNITY INOVA
 1000.1000 usec 999.900 Hz UNITY INOVA, UNITYplus, MERCURY

Below "sw" values of 1000 Hz, the step size is below 0.1 Hz even on MERCURY
(MERCURY-Vx, MERCURYplus) systems. See also Agilent MR News 1998-01-30 for
information on how "sw", "sw1", etc. are stored in VnmrJ parameter files.
 The use of DSP ("dsp='r'" on the UNITY INOVA, or "dsp='i'" on any system)
complicates the issue insofar as now, the final spectral window ("sw") is one
of the executable values (see the above table) DIVIDED BY THE OVERSAMPLING
FACTOR, whereby the oversampling factor ("oversamp") is always an integer.
Typically (in liquids NMR), people will run with the maximum sampling rate
(400 KHz with "dsp='r'", 500 KHz with "dsp='i'" on UNITY INOVA, 100 KHz on the
other systems), unless "sw" is very small. This means that in practice, with
DSP, people are using a VERY SMALL SUBSET of the values for "sw" that would be
available without downsampling. However, the advantages of DSP (better filter
properties, better baselines, far less intensity distortions within the DSP
filter passband) outweigh the restrictions in the possible "sw" values.
 Now, with the DirectDigital receiver (DDR) architecture of our current NMR
spectrometers, we are entering a totally different gamut: here, we are using a
fixed sampling rate of 80 MHz, producing a data stream that is first
downsampled to 10, 5, or 2.5 MHz. Currently, we are only using the option of
downsampling to 2.5 MHz (unless you want to acquire spectral windows of 5 or
10 MHz): the 2.5 MHz intermediate spectral window is (currently) to be taken
as a fixed value, from which the observed "sw" values are derived by applying
one or two optional stages of downsampling, i.e., one or two divisions by an
integer. This leads to a totally different set of values, compared to the
UNITY INOVA without (or with) DSP:
 sw downsampling
 500000.0 Hz 5
 416666.7 Hz 6
 357142.9 Hz 7
 312500.0 Hz 8
 277777.8 Hz 9
 250000.0 Hz 10
 ...
This table is valid up to downsampling rates of 25 (i.e., an "sw" of 100 KHz);
beyond that (i.e., at smaller spectral windows) there are further restrictions
because the digital filtering is then performed in two stages. A discussion of
how the downsampling / digital filtering is distributed onto these two stages
is beyond the scope of this article: this is handled inside the acquisition
software and is currently not accessible to the user. Empirically, you will
find that the step size of the allowed "sw" values decreases with "sw":
 52083.3, 50000.0, 48076.9, ...
 25510.2, 25000.0, 24509.8, ...

 10080.6, 10000.0, 9920.6, ...
 4006.4, 3980.9, 3955.7, ...
 2510.0, 2500.0, 2490.0, ...
 1001.6, 1000.0, 998.4, ...
Keep in mind that these spectral windows are associated with appropriate,
accurate digital filtering with sharp filter cutoff (i.e., no folded signals)
while maintaining excellent baseline characteristics. You cannot compare this
set of values with the first list above for instruments without the use of
DSP, for several reasons:
 - What really matters on conventional systems (without DSP) is the step size
 in the analog filter settings ("fb") - and "fb" typically has a much larger
 step size than "sw" (particularly at the lower end), while with the
 DirectDigital receiver, the digital filters are ALWAYS and ACCURATELY
 matched to the actual "sw" value.
 - Related to that: due to the excellent filter cutoff characteristics, you
 don't need to consider cases where you would need to fine-tune "sw" to
 move folded signals to non-overlapping positions!
The settability of "sw" with the DirectDigital receiver is more than adequate
for most or all applications. Considering that the above value set comes with
all the advantages of the new architecture (see above and Agilent MR News
2005-03-14), you certainly would not want to revert to the largely unnecessary
extra "sw" flexibility of the conventional spectrometer architectures!
 [Agilent MR News 2006-10-26]

A POTENTIAL TRAP WITH "go" AFTER "df" OR "wft":

 Whenever you call "rtp" to retrieve parameters, VnmrJ runs the macro
"fixpar" which not only checks whether the parameter set is complete, but also
ensures that the parameter limits / allowed values, as well as the parameter
settings are compatible with the hardware for which VnmrJ is configured (note:
this also applies to stand-alone workstations, see Agilent MR News 2003-08-18
for more information). This should avoid situations where you type "go" and
the acquisition software then tries talking to non-existent hardware - at
least in first approximation: after an "rtp" on imported parameter sets it is
usually a good idea first to call "dps" to see whether the parameter settings
make sense.
 The same mechanism also plays when you recall a data set using "rt". At
first, this may be viewed as irritating behavior, because after the "rt"
command, the displayed parameters may NOT agree with the ones that are
associated with the recalled data set - on the other hand, it DOES enable you
to re-acquire a given spectrum, even if the original data were acquired on
different spectrometer hardware (provided of course you have the appropriate
pulse sequence, and provided that pulse sequence is compatible with your
spectrometer configuration). The above (possible) divergence between the
parameter settings and the ones associated with the original data is resolved
immediately when you perform "df", "ft" or "wft" (or the equivalent nD
commands), which copies the "processed" parameter tree into the "current" one:
as soon as you look at acquired data, VnmrJ also displays the parameters that
are associated with the data set that is being processed.
 While these mechanisms appear to fulfill both the hardware compliance as
well as GLP-related requirements (the latter by ensuring that parameters
associated with a given data set are not easily manipulated), there is a
potential trap in this functionality: after "df", "ft" and related commands
you can NOT assume that the parameter settings are still compliant with your
spectrometer! One example is discussed in the article below. Conclusion: if
you want to re-acquire an imported spectrum, make sure you call "fixpar"
prior to starting the experiment, and maybe double-check the final settings
by calling "dps". On top of that: even if you have called "fixpar" explicitly,
if you ever call "df" or "ft" etc. AGAIN prior to starting the experiment, you
would also need to repeat the "fixpar" call!
 [Agilent MR News 2006-10-26]

A MYSTERIOUS REFERENCING ISSUE AND THE "sw" PARAMETER:

 One user recently reported having acquired two "identical" spectra in
sequence, on the same sample, and referenced them both to the same signal -
and yet, there was a referencing error of up to about 0.1 ppm with the low
field signals. "sfrq" was identical, "sw" was slightly different, but that
was compensated for by the referencing parameters ("rfl" / "rfp", "reffrq");
what happened?

 The solution is in the article above: a 1D FID from a UNITY INOVA was
imported onto a new spectrometer with DirectDrive architecture. Upon doing
"rt", the software called "fixpar", which performed "sw=sw" to have the "sw"
parameter re-calculated to a "legal" value for the DirectDigital receiver -
but then the user called "wft" to re-check the original data, which restored
the acquisition parameters used in the UNITY INOVA. One of the two spectra was
"reacquired" by typing "go" after an "ft" - and then, "sw" had an "illegal"
value that was rounded off to the nearest possible value by the acquisition
software. The real issue with this is that the newly acquired spectrum now
included an incorrect "sw" value in its parameter set: "go" does NOT correct
"impossible" settings of "sw" (we certainly don't want "go" to alter "sw" /
the dwell time, and with it the acquisition time, "at").
 The conclusion is given in the previous article: when repeating experiments
based on imported AND RETRANSFORMED data sets it is IMPERATIVE that you call
"fixpar" prior to starting the experiment with "go" - or alternatively, use
"rtp" rather than "rt", or DON'T retransform! This same issue could also arise
upon importing spectra from a UNITY INOVA to an older or routine spectrometer
with a lower timing resolution.
 [Agilent MR News 2006-10-26]

2006-12-05:

CHANGES TO CONFIGURATION PARAMETERS:

 In VnmrJ, configuration settings (i.e., "systemglobal" parameters that refer
to and describe the hardware configuration of your system) are typically
entered by the installer, by selecting "Edit" -> "System settings..." ->
"System config" (or by typing "config" on the command line). Thereafter, there
is rarely a need to alter or update these parameters, with a few exceptions:
 - from time to time, the system lock frequency ("lockfreq") may need to be
 altered in order to compensate for magnet drift;
 - a new accessory is added, or in a laboratory with multiple instruments an
 accessory is moved between instruments;
 - a user or engineer may wish to disable an accessory while it is not used
 temporarily, or for testing purposes;
 - on a processing workstation you may want to adjust the VnmrJ configuration
 parameters to match those of the system on which the bulk of the processed
 data were acquired (see also Agilent MR News 2003-08-18 and Agilent MR News
 2000-03-25).
As these parameters are system-specific and apply to all accounts / users of
the software, we only allow the system administrator (typically vnmr1) to
alter such values permanently. This is controlled by the permissions of the
associated parameter file, "/vnmr/conpar": vnmr1 has write permission, and
for vnmr1 the above menu selection opens the configuration utility "config";
other users only see a checkbox "Display configuration" which (if checked)
will cause the pop-up utility to display the hardware configuration in the
text output pane ("Process" -> "Text output") once the utility is closed.
Changing and viewing the system configuration through "config" (or via the
main menu) is safe; whenever possible, this should be the ONLY mechanism in
use for altering configuration parameters.
 There are situations when the above mechanism is inconvenient (convenience
and safety often don't go together!) - e.g., there may be situations when the
system administrator is not around, but the operator needs to adjust the
lock frequency, or any of the other examples above. Fortunately, the presence
of the system administrator (or knowing the administrator password) is NOT
required to change configuration parameters:
 - any user can directly change "systemglobal" parameters, e.g., by typing
 lockfreq=new_value
 on the command line (this assumes that you know the name of the associated
 parameter and its "legal" values);
 - on the other hand, also users other than vnmr1 can launch the interactive
 configuration utility, by typing "config" on the command line, and change
 ANY system configuration setting, even without knowing the name of the
 associated parameter.
Of course (and for good reasons) both these mechanisms will NOT alter the
contents of "/vnmr/conpar" (unless the permissions of that file are altered,
which is definitely NOT recommended):
 - even for vnmr1, ONLY the interactive "config" utility saves changes in
 "/vnmr/conpar", though vnmr1 COULD use
 fsave('/vnmr/conpar','systemglobal')

 to save changes from direct parameter entry; we recommend using the "fsave"
 mechanism ONLY in exceptional cases - the "lockfreq" parameter MAY be one
 of the few exceptions.
 - for users other than vnmr1, ALL "systemglobal" changes are valid ONLY for
 the duration of the current VnmrJ (or VNMR) session, i.e., when you exit
 VnmrJ and later re-start it, the new process will start up by reading the
 contents of "/vnmr/conpar" (and hence revert to the standard settings). If
 a user other than vnmr1 uses "config", this is clearly indicated in the
 lower left corner of the "config" window.
This implies that you may need to repeat the alteration of such parameters for
every session. There may be cases where one wishes to ENFORCE local settings
for certain "systemglobal" parameters for specific accounts, e.g.:
 - if an account is to be used in connection with a specific or a restricted
 hardware configuration ONLY, or
 - if an account is to be used for data processing ONLY (in which case the
 "system" parameter could be set to "datastation" for that user);
This can be achieved by adding such parameter settings, e.g.,
 system='datastation'
to a local "login" macro (see also Agilent MR News 1998-08-07 and articles
referred to therein).
 [Agilent MR News 2006-12-05]

CONFIGURATION PARAMETERS, VnmrJ VIEWPORTS, AND BACKGROUND PROCESSING:

 There are a couple interesting quirks in relation to local / temporary
configuration settings as described in the previous article, namely:
 - if you are acquiring in an experiment that is NOT current to one of the
 VnmrJ viewports, the acquisition process will fork a "background copy"
 of "/vnmr/bin/Vnmrbg", and that background process will start by reading
 "/vnmr/conpar", i.e., it will use the default configuration settings.
 - similarly, in automation, both the launching of the experiments AND the
 processing will be ALWAYS performed by such background processes and will
 therefore use the settings from "/vnmr/conpar". IN PARTICULAR, you can NOT
 change "traymax" (the "Sample changer" setting in "config") directly (or as
 user other than vnmr1) and then expect automation to operate on the
 specified sample changer type! See also Agilent MR News 1999-02-12 for a
 related note.
 - when you are running VnmrJ with multiple open viewports, temporary and
 permanent changes to global and systemglobal (configuration) parameters
 ARE propagated from the active to the other viewports. HOWEVER, if you open
 any NEW viewports, each of these will be driven by a new "Vnmrbg" process
 that starts by reading "/vnmr/conpar" and will therefore again use the
 standard settings, i.e., temporary configuration changes are NOT active for
 viewports that are opened AFTER such parameter changes; see also bug report
 "viewports.j2101".
All these issues can be avoided by using "config" as vnmr1 to alter system
configuration parameters.
 [Agilent MR News 2006-12-05]

2007-02-02:

USING "setvalue" ON ARRAYED PARAMETERS:

 In the vast majority of cases, VnmrJ parameter values are set using direct
parameter entry, e.g.: "d1=2". This works for all user-enterable parameters in
the "current" tree (i.e., the parameters that you view and work with in the
current VnmrJ workspace / experiment), in the "global" tree (user-specific
parameters that are NOT experiment-related and are stored in the user's
"~/vnmrsys/global"), as well as in the "systemglobal" tree (stored in
"/vnmr/conpar"), although in this last case changes by direct parameter entry
are only temporary, see also Agilent MR News 2006-12-05.
 Direct parameter entry is subject to a number of restrictions and "side
effects", such as
 - the entered values must fall into the range of "legal" values as defined in
 the parameter's limits, either as direct entries (maximum, minimum, step
 size), or using indirect references to limits stored in "parmax", "parmin",
 and "parstep", see also Agilent MR News 1998-08-28;
 - parameter entry may be restricted by the parameter's internal protection
 (protection bits), see "man('setprotect')" - e.g., parameters may or may
 not be arrayable, enterable, etc.;

 - there are numerous cases where the change of a parameter causes a macro
 ("underscore macro", see also Agilent MR News 1999-12-03) to be executed
 (this is triggered by one of the protection bits) - this typically serves
 to adjust other parameters which are linked to the one that is changed
 directly;
 - a change to ANY acquisition parameter in the current tree will cause "ct"
 to be reset to zero;
 - there is an entire tree (the "processed" tree, linked with the data in the
 experiment) that is NOT accessible to direct parameter entry (think of this
 as a "GLP ruling").
All these restrictions are there for good reasons and are key to VnmrJ's data
and parameter handling functionality. However, there are some rare, but
legitimate cases where a need to bypass these restrictions arises. One way to
bypass any restrictions would be by directly editing a parameter (e.g., using
"paramedit" or "paramvi") - however, because the VnmrJ parameter storage
format is NOT primarily optimized for visual readability (for details see
chapter 5 "Parameters and Data" in the VnmrJ User Programming Manual), this is
NOT A RECOMMENDED OPTION (as it opens the possibility to screw a parameter's
format, possibly corrupting entire parameter trees) - plus, it would not be
applicable to such "special" parameter manipulations inside macros. The
command to use here is "setvalue". The syntax for "setvalue" is
 setvalue('parameter_name',parameter_value)
for the "current" tree (where the value can be a string or numeric),
 setvalue('parameter_name',parameter_value,'tree_name')
for changes in other ("processed", "global", "systemglobal") trees, and
 setvalue('parameter_name',parameter_value,array_index)
for arrayed parameters (again with an optional parameter tree argument). The
array index can be the index for any of the defined array elements in that
parameter, or the first element following the values defined so far: if you
want to enter an entire array using "setvalue", you need to enter the values
one by one, e.g.:
 setvalue('d2', 0, 1, 'processed')
 setvalue('d2', .1, 2, 'processed')
 setvalue('d2', .2, 3, 'processed')
 setvalue('d2', .4, 4, 'processed')
 ...
While defined array elements can be changed in any order, UNDEFINED elements
must be added IN SEQUENCE, and again one by one. This permits EXPANDING an
array by one element at a time. There are two cases which require special
treatment:
 - if you want to "unarray" a parameter, i.e., change an arrayed value into
 a non-arrayed value, you need to enter the new value with 0 as array index,
 such as in
 setvalue('d2', .1, 0, 'processed')
 - if you want to make the array size SMALLER, you MUST first eliminate the
 array using the above method, then enter the ENTIRE NEW array, e.g.:
 setvalue('d2', .2, 0, 'processed')
 setvalue('d2', .4, 2, 'processed')
This feature has been omitted in the current manuals - it has been corrected
for future versions of the documentation. Just as a reminder: remember that
the "setvalue" command will
 - NOT check the parameter values against the parameter's built-in limits;
 - NOT execute underscore macros: linked parameters are NOT automatically
 (co-)adjusted (which may lead to conflicting parameter settings: think of
 a case where a user changes "at", but NOT "np"!);
 - if you change a parameter array size, "arraydim" is NOT adjusted;
 - if you eliminate a parameter array, neither "arraydim" nor "array" are
 adjusted
So, "setvalue" should be used wisely; it may sometimes be better
 - first to copy the entire "processed" tree to the current one (e.g., using
 "df", "wft", or "wft2d"), then
 - to save "ct" in an temporary parameter:
 $ct = ct
 - to use standard parameter entry for proper / clean parameter settings, then
 - to restore the value of "ct":
 setvalue('ct', $ct)
 - and finally to copy back the entire parameter tree, using
 groupcopy('current','processed','acquisition')
See also Agilent MR News 2006-11-28 for an example (in that article the "$" is
actually missing from the "setvalue" command!), or - for more examples - see

the FAQ document on "Handling Arrays in VNMR / VnmrJ" ("faq/vnmr_arrays") in
the on-line User Library at
 http://www.varianinc.com/products/nmr/apps/corner.html
Thanks to Maj Hedehus for bringing up this topic, and thanks to Dan Iverson
for the information on eliminating arrays using "setvalue".
 [Agilent MR News 2007-02-02]

2007-02-26:

DOCUMENTATION AMENDMENT FOR NMR SYSTEMS WITH 1 KWATT AMPLIFIERS:
(by Jim Frye, Varian)

 On combined solids & liquids NMR systems with 1 KWatt high power amplifiers,
you want to disable these amplifiers when they are not in use (such as when
doing liquids NMR). This control is achieved through an optional, global flag
parameter "hipwrampenable". For safety reasons, the high power amplifiers are
disabled if the parameter "hipwrampenable" does not exist. The current Command
and Parameter Reference Manual for VnmrJ 2.1B describes this parameter and its
creation using the command
 create('hipwrampenable', 'flag')
However, this instruction is WRONG, in that "hipwrampenable" must be created
as a GLOBAL parameter, using
 create('hipwrampenable', 'flag', 'global')
With the first command above would create "hipwrampenable" as LOCAL parameter
(in the "current" tree), while the PSG software specifically looks for a
global parameter and would therefore IGNORE any local parameter with that same
name. As this parameter is optional, there would be no error message - and the
high power amplifiers would remain disabled.
 An addendum by the editor: There is an additional quirk with the presence of
a local parameter "hipwrampenable": if BOTH a local AND a global parameter
with that name exist, the parameter HANDLING (display, setting, parameter
query using "hipwrampenable?") would refer to the LOCAL parameter (as local
parameters have precedence over global ones with the same name), and hence you
may THINK you are controlling the amplifier, while indeed the relays remain
set as defined by the (setting or absence of the) global parameter. This may
be detrimental in two ways:
 - if the global parameter does not exist or defines the 1 KWatt amplifiers as
 disabled, solids NMR experiments may not work as expected;
 - worse than that, if the global parameter enables the high power amplifiers,
 AND there is a local parameter "hipwrampenable", you may type
 hipwrampenable='nnn'
 to do liquids NMR, while the amplifiers remain activated through the global
 parameter, possibly causing serious damage to your liquids probe.
Considering potential detrimental effects of a local parameter overriding and
hiding a global parameter with the same name, and considering that you might
already have saved parameter sets with a local copy of that parameter, it may
be worthwhile considering the addition the following construct to the macro
"/vnmr/maclib/fixpar":
 exists('hipwrampenable','parameter'):$e
 if $e then
 destroy('hipwrampenable')
 endif
This would remove any undesired local copy of this parameter, if present.
 The commands "setvalue" and "display" permit setting and viewing (querying)
parameters in SPECIFIC trees, irrespective of the presence of parameter
duplicates in other trees.
 [Agilent MR News 2007-02-26]

2007-10-06:

THE "probeConnect" PARAMETER (by Christine Hofstetter, Varian):

 The Varian NMR System (DirectDrive) console now supports a new parameter
called "probeConnect" that can be used in lieu of "rfchannel". The latter maps
logical RF channels in the pulse sequence (as defined through "tn", "dn",
"dn2", etc.) to physical RF channels (channel 1, channel 2, etc.) in the
console, but with this parameter alone - e.g., with a setting of
 rfchannel = '1324'
the PSG software has no "notion" of how the RF channels are connected with the
NMR probe, and it is up to the operator to ensure a proper correspondence

between the nucleus settings in the local parameters, "rfchannel", and the
probe connectivity. "rfchannel" is a local parameter that may need to have
pulse sequence specific settings in the case of sequences with diverging RF
channel assignments / usage - plus, the "rfchannel" setting may need to be
altered to accommodate specific spectrometer / RF channel configurations.
 The new parameter "probeConnect" is more user friendly, more versatile, and
yet easier to understand. It simply and unambiguously maps nuclei (specified
via "tn", "dn", "dn2", etc.) to physical RF channels, avoiding confusion and
unnecessary complexity: with "probeConnect" you define how the probe RF ports
are connected to the RF connectors of the preamplifier box. An example of a
"probeConnect" setting is
 probeConnect = 'H1 C13 F19 N15'
If your system is a four-channel system that is configured as HB (high band) -
LB (low band) - HB - LB, but you would like to run a BioPack sequence that is
written such that
 tn='H1' dn='C13' dn2='N15'
Using the above setting for "probeConnect" will cause the 15N pulses to be
created on RF channel 4, so that even though the pulse sequence is written
with 15N on channel 3, channel 4 is used for 15N. If you then switch to an
experiment that has
 tn='H1' dn='N15' dn2='C13'
the RF channels will automatically be reassigned accordingly. Since
"probeConnect" is a global parameter, the entire BioPack autocalibration
routine can be run with 15N cabled on channel 4 through the above
"probeConnect" setting.
 Another useful feature of "probeConnect" is that is allows you to observe
nuclei on the third or fourth RF channel, provided the extra hardware is
installed on the system. If a three-channel system has
 probeConnect = 'H1 C13 P31'
and "tn='P31'", the 31P pulses will be created on channel 3, and the signal
will be observed through the third channel preamplifier. In this case,
"probeConnect" could also be set to
 probeConnect = 'H1 X P31'
where X is a "wild card" value that the software will set to any lowband
nucleus (other than P31) in the parameter set. The possibilities are endless.
Only ONE wild card token "X" may be used in the "probeConnect" value: multiple
"X" tokens will generate an error message.
 The number of "tokens" in the string MUST be equal to the number of RF
channels. Parameter sets must not contain nuclei that are not part of the
"probeConnect" value, unless the "wild card" (X) is present in the string.
With the "X" token, one low-band nucleus that is not listed in the string is
permitted. For example, a five-channel system has
 probeConnect = 'H1 C13 F19 N15 H2'
and the parameter set has "tn='Si29'": in this case the system does not know
how to deal with this nucleus, and the PSG software will abort with an error
message indicating that the "rfchannel" index is not properly mapped. However,
with a setting of
 probeConnect = 'H1 X F19 N15 H2'
the system will run with Si29 on channel 2.
 Unlike "rfchannel", "probeConnect" is a global parameter, so does not have
to be re-created for every experiment. To create "probeConnect", type
 create('probeConnect','string','global')
on the VnmrJ command line. Note that as soon as "probeConnect" exists, it
overrides any "rfchannel" setting in the local parameters (see the note below
for a potential issue with VnmrJ 2.1B).
 If you ever want to stop using "probeConnect", you can destroy the parameter
with the command
 destroy('probeConnect','global').
On the other hand, you may want to consider adding "probeConnect" to your
"saveglobal" parameter, such that its setting is logged / archived together
with the data (in a local parameter "probeConnect_").
 [Agilent MR News 2007-10-06]

USING THE "probeConnect" PARAMETER UNDER VnmrJ 2.1B:

 If you are running VnmrJ 2.1B and want to use "probeConnect", you will also
need to create an additional parameter "preAmpConfig", with
 create('preAmpConfig','string','global')
The values for "preAmpConfig" are "H" for a high band preamplifier, "L" for a
low band preamplifier, and "X" for no preamplifier on a given channel. For

example, a three-channel spectrometer with 1 HB preamp and 1 LB preamplifier
(on channels 1 and 2) would use
 preAmpConfig='HLX'
(no spaces). The "preAmpConfig" parameter is not needed in VnmrJ 2.2C.
 As mentioned in the article above, starting with VnmrJ 2.2A, "probeConnect"
overrides any "rfchannel" setting (if present). "probeConnect" was already
supported in VnmrJ 2.1B - but that implementation was somewhat incomplete: in
VnmrJ 2.1B you should avoid having defined BOTH "probeConnect" (global) and
"rfchannel" (local) at the same time - the results would be unpredictable at
best.
 What is the best way to avoid the conflict between "probeConnect" and
"rfchannel" in VnmrJ 2.1B? At first, one might think of adding a construct
such as
 exists('probeConnect','parameter','global'):$e
 if $e then
 exists('rfchannel','parameter'):$e1
 if $e1 then destroy('rfchannel') endif
 endif
to the "fixpar" (or the "userfixpar") macro, such that in the presence of
"probeConnect" any "rfchannel" parameter is removed from retrieved parameter
sets. However, this may cause certain pulse sequence macros to fail or abort
when trying to retrieve "rfchannel" using "rtv" / "psgset", or when trying
to set "rfchannel" to specific values. A better idea is to leave "rfchannel"
alone AT FIRST, but rather to add the above construct to the "go" macro (e.g.,
above the line reading "if (traymax=96) then"), or by creating a macro
"usergo" with the above construct. This way, setup macros can work as they
used to (manipulating "rfchannel", if / as necessary on systems without the
"probeConnect" parameter) and don't need to be altered, and if "probeConnect"
exists, "rfchannel", will be deleted in the very last moment, just before the
pulse sequence is launched.
 Again, none of this is necessary with VnmrJ 2.2C.
 [Agilent MR News 2007-10-06]

2009-07-17:

UNDOING VnmrJ COMMANDS / ACTIONS?

 Many desktop productivity programs not only remember a (possibly large)
number of past commands and user actions - they also permit moving "back in
time" through this history and undoing an entire series of such actions with
key combinations such as [Ctrl-z], often also re-doing actions just undone,
with key combinations such as [Ctrl-y] (obviously, as such actions typically
depend on the result of previous actions, one can only move back in the
"event stack" sequentially). This is possible because the actions in the
command stack are from a finite set of well-defined user actions (menu
selections, mouse actions, etc.), and often the object of such actions is also
well-defined and permits keeping a parallel stack of versions, reflecting the
state of the data at past intermediate stages (so you don't need "inverse"
versions of each possible action to move back in the history).
 VnmrJ has a command stack / history, too - however, this stack only serves
to memorize and possibly re-execute past command lines (with modifications by
command line editing prior to the new call, as appropriate), but NOT UNDOING
any actions: unlike in office productivity suites, VnmrJ commands / actions
can be vast sets of sequential / nested macros of arbitrary complexity, and
the object of such commands is of arbitrary size (e.g., 3D images, nD NMR
data), hence undoing even just a single, generic command line or menu action
is virtually impossible.
 [Agilent MR News 2009-07-17]

UNDOING PARAMETER CHANGES?

 Along the lines of the article above, VnmrJ does NOT keep backups of a
given parameter, neither of its values, nor its properties such as parameter
type, group, limits, protection bits, enumerals (enumerated allowed parameter
values), etc. - in other words: once you change a parameter value, or, e.g.,
its limits, any previous values (arrayed or not) or properties are trashed
immediately. This is rarely a problem at all because
 - parameter changes typically happen in the "current" parameter tree, and
 in the case of acquisition parameters, re-processing an acquired data set
 will automatically bring back the original parameter value from the

 "processed" (shadow) parameter tree, along with all of the parameter's
 built-in properties.
 - when setting up parameters for an acquisition, one cannot resort to a
 "processed" parameter tree for recovery - but you will typically start off
 a stored parameter or data set, and so in the worst case you only
 need to redo the few steps from where you recall stored parameters.
In all these years we have not had complaints about a missing parameter (value
or property) history: typical "incidents" are simply erroneous parameter
entries (e.g., a typing error), and then you simply correct the last command
line to re-enter the proper value. If you detect an erroneous parameter value
in a stored parameter set, you can retrieve that parameter set, correct the
value and re-save the parameters:
 rtp('/vnmr/parlib/Ghsqc') d1=1 svp(file)
The same mechanism can be used to correct parameter limits, protection bits
etc. in saved parameter sets - here, you would replace the parameter entry in
the above example with the appropriate "setlimit", "setgroup", "setprotect",
"setenumeral", etc. command (see the Command and Parameter Reference Manual
for information on these commands).
 That presumes that you know what value or property a given parameter should
have - in the case of parameter values this is usually trivial (otherwise you
would not detect that the current value is wrong). However, properties OTHER
THAN the active parameter value may be somewhat non-trivial to restore - e.g.,
enumerals or parameter limits. In both these cases you will only find out
about erroneous settings when you can't enter the desired and valid parameter
value(s). You can use "display('parameter_name')" to see the current limits or
enumerals, and
 - you can remove the enumerals (i.e., allowed flag characters or string
 values) using the "setenumeral" command - but then the parameter entry will
 no longer be restricted to "legal" values
 - erroneous (e.g., too restrictive) parameter limits can NOT simple be
 "removed", as limits are an inherent part of the parameter definition
 (while most parameters don't have enumerals).
If you have lost the enumerals for a given parameter and don't know what they
should be, you will need to find a parameter set with an equivalent parameter
that still has the enumerals, use "display('parameter_name')" to see them,
then use
 rtp('/vnmr/parlib/Ghsqc') setenumeral(...) svp(file)
to correct them in the faulty parameter set. For restoring parameter limits
see the note below.
 Note that this article and the one below are not really meant to present a
concrete recipe for specific issues (even though they were triggered by actual
inquiries from users), but are rather meant to present generic information on
VnmrJ parameter handling and related issues.
 [Agilent MR News 2009-07-17]

RESTORING PARAMETER LIMITS:

 In the context of the above articles, one tricky case with a potentially
larger scope was reported recently by a user: assume you have changed the
limits of a parameter in one or several parameter sets - take for instance
"oversamp" on a UNITY INOVA - and you want to revert this change. As stated in
the article above, you cannot simply "remove" the parameter limits: at most,
you could set the numeric limits to a very large range, e.g.:
 setlimit('oversamp',32767,0,1)
("oversamp" is a positive integer) - this avoids any practical restriction,
but also permits entering values which are "illegal" or without practical
meaning, and which that could potentially cause havoc. You need to find out
what the proper range for that parameter is. In the case of a standard
parameter this range may be found in the description in the Command and
Parameter Reference manual, or you can quickly screen a parameter directory in
"/vnmr" for the proper values, e.g.:
 cd /vnmr/parlib
 grep '^oversamp ' *.par/procpar
which prints the header line for the parameter "oversamp" in all of the
specified parameter sets (see chapter 5 "Parameters and Data" in the "User
Programming Manual" for details on the VnmrJ / VNMR parameter format). Note
the syntax in the above "grep" call:
 - the "^" indicates the start of the line, so we don't extract occurrences of
 the specified parameter name inside a "dg" or "ap" template),
 - the extra blank after the parameter name excludes other parameter names

 that start with the same string; in saved parameter sets ("*.par"),
 - for stored FIDs ("*.fid") and parameter sets ("*.par"), the actual
 parameters are contained in a subfile "procpar".
Here, this will yield output such as
 Apt.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 aptune.par/procpar:oversamp 7 1 20 0 1 2 1 9 1 64
 Carbon.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Cigar2j3j.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Cosy.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 COSY.par/procpar:oversamp 7 1 20 0 1 2 1 9 1 64
 cryo_burnin.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Dbppste_cc.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Dbppsteinept.par/procpar:oversamp 7 1 66 0 1 2 1 9 1 64
 Dbppste.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Default.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 Dept.par/procpar:oversamp 7 1 68 0 1 2 1 9 1 64
 ...
The limits (maximum, minimum, step size) are the numeric (integer) tokens 3,
4, and 5 after the parameter name, i.e., the minimum is always 0, the step
size is 1, and the maximum is either 20 (in this case for "dsp='i'") or 68
(for "dsp='r'").
 If your system has been "infected" with erroneous parameter limits (i.e.,
you have altered the limits in numerous standard parameter sets), that method
may not give clear results - then you may need to look this up on a system or
a directory without these alterations (in the very worst case you could do a
temporary install of VnmrJ from the original media into a new directory, in
order to see "vanilla" parameter definitions).
 A recipe for fixing single parameter sets was given in the article above.
For the case of "general parameter contamination" it would be very tedious to
locate and correct all relevant stored parameter sets - in these cases it is
better to tackle this with a different approach:
 - you can correct parameters upon retrieving data, either by adding a
 corrective construct such as
 exists('oversamp','parameter'):$e
 if $e then
 setlimit('oversamp',68,0,1)
 endif
 or, in this case, better even a construct such as
 exists('oversamp','parameter'):$e
 if $e then
 if dsp='r' then
 setlimit('oversamp',68,0,1)
 else
 setlimit('oversamp',20,0,1)
 endif
 on('oversamp'):$oson
 if $oson then
 oversamp=oversamp
 endif
 endif
 to the macro "/vnmr/maclib/fixpar", or - far better - to an independent
 macro "~/vnmrsys/maclib/userfixpar" which is automatically invoked by
 "/vnmr/maclib/fixpar". This way, you don't need to modify a standard VnmrJ
 macro. To cover all users, "userfixpar" can be placed in "/vnmr/maclib",
 provided no user has a local "userfixpar" macro.
 - alternatively (or even in addition) to the above, you could add a parameter
 check before the parameter is actually USED. "oversamp" is an acquisition
 parameter, i.e., it takes effect upon "go", "ga", or "au" (all of which are
 one and the same macro in "/vnmr/maclib"). But also here it is better NOT
 to alter the standard VnmrJ macro: instead, the above construct can be
 placed in a separate macro "usergo" which is automatically invoked if
 present. Again, "usergo" can be placed in every user's "~/vnmrsys/maclib",
 or in "/vnmr/maclib", provided there are no local copies which would
 override the global version. Or, if SOME users already have a local version
 of "usergo", they would also need to add the above construct, for complete
 coverage.
Note that calling "setlimit" JUST sets the parameter limits, but does NOT
re-check the parameter value by itself - therefore, if a parameter is active,
the value should be re-entered in order to have the value(s) checked against
the modified parameter limits.

 As an alternative to looking up existing parameter definitions in a VnmrJ
directory, you can also check where in "/vnmr/maclib" such a parameter is
created, e.g.:
 cd /vnmr/maclib
 grep oversamp * | grep create
which for this parameter points us to the "paros" macro, see below.
 As mentioned above, this is NOT necessarily a recipe for you to follow as
is: it is rather meant to explain general VnmrJ parameter handling principles
(and the example does not apply to systems with DirectDrive architecture). On
the other hand, if you have indeed "messed around" with parameter limits
(rather than just setting parameter values), then the above becomes real: the
point is that VnmrJ typically DOES set up its parameters with the appropriate
limits ("oversamp", to stay with this example, is created when entering "dsp",
which calls "_dsp", which in turn calls "paros" - and the "paros" macro
creates "oversamp", if necessary:
 exists('oversamp','parameter'):$e
 if (not $e) then
 create('oversamp','integer')
 setlimit('oversamp',20,0,1)
 setprotect('oversamp','on',9)
 setgroup('oversamp','acquisition')
 oversamp=1
 ...
 endif
However, if "oversamp" exists, the parameter is NOT altered (in order to
preserve the current value), and at the same time its limits are NOT checked,
updated or restored, and similarly, subsequent macros may check the value of
"oversamp", but they should NOT be expected to check its limits, protection
bits, etc.! This is pretty much a general principle in most of VnmrJ: "fixpar"
(called automatically upon retrieving parameters or data) checks for the
existence and the value of a number of parameters, and it will create them if
necessary - but if a parameter exists, its limits are NOT checked, even though
a MAGICAL tool to look at parameter limits ("getlimit" command) exists.
 Talking about parameter limits: remember that parameter limits are ONLY
active for DIRECT parameter entry ("parameter_name=value") - limits are
BYPASSED when using "setvalue", or when setting parameter values through
return argument mechanism, i.e.,
 trunc($value,1,0):oversamp
will happily set "oversamp" to arbitrary values, no matter what the limits
are: in such cases it is often a good idea to follow up with a parameter
re-entry in order to have values checked against parameter limits:
 trunc($value,1,0):oversamp
 oversamp=oversamp
Also "setvalue" does NOT check parameter limits.
 At a first glance, it makes more sense to check parameter properties upon
retrieval (such that users realize what the parameter limits are BEFORE typing
"go") - on the other hand, for crucial parameters, a check upon "go" (e.g.,
through "usergo") may be a valid and justified approach, too, given the
existence of possible limit bypasses.
 Finally, just to complete the example selected here, the above segment from
"paros" indicates that a safe default limit setting for "oversamp" should be
 setlimit('oversamp',20,0,1)
 [Agilent MR News 2009-07-17]

2009-08-19:

PARAMETER HIERARCHY IN VnmrJ - REMINDER AND FOLLOW-UP:

 From a MAGICAL (command line and macro) point-of-view, VnmrJ uses a well
defined parameter organization - parameters are organized in trees:
 - the "current" tree (the working parameters in the current experiment /
 VnmrJ workspace, stored in the the file "curpar")
 - the "processed" tree (the parameters archived with an acquired data set,
 normally not handled directly by the user, stored in the file "procpar" in
 the VnmrJ experiment or with the archived data set)
 - the "global" tree ("~/vnmrsys/global"), holding parameters that are user-
 but NOT experiment-specific
 - the "systemglobal" tree ("/vnmr/conpar"), holding system-specific parameter
 values that can only be set and changed permanently by vnmr1 / the VnmrJ
 administrator.

In MAGICAL, these parameter trees are handled with a clear hierarchy, i.e.,
MAGICAL knows how to resolve occurrences of multiple instances of the same
parameter name in several of these trees:
 - for standard parameter handling, the hierarchy is
 current > global > systemglobal
 i.e., a parameter in the "current" tree will override any "global" or
 "systemglobal" parameter with the same name, and a "global" parameter will
 override a "systemglobal" parameter with the same name.
 - parameters in the "processed" tree can only be manipulated by special
 commands, such as "setvalue" and related utilities, and apart from that,
 this tree is built, read and maintained transparently by VnmrJ commands
 such as "go", "df", "wft" and others - the "processed" tree is primarily
 meant to be used for GLP and for VnmrJ's "internal bookkeeping".
All this is explained in more detail in the FAQ document "VnmrJ / VNMR
Parameter Handling" to be found in our "User Pages" at
 http://www.varianinc.com/products/nmr/apps/corner.html
The associated ASCII file "faq/vnmr_parameters" can be downloaded from the
User Library e-mail responder as explained in the article above. This document
also includes a set of related articles from past issues of Agilent MR News.
 These sources also discuss the specifics of the various parameter GROUPS
("acquisition", "processing", "display", etc.) from the point-of-view of VnmrJ
parameter handling in parameter setup and data processing.
 One aspect has not been covered in the sources / articles mentioned above:
in ACQUISITION (VnmrJ pulse sequences, PSG software in general), parameters
are (typically, at least) NOT handled hierarchically. In other words: there
MAY be cases where a parameter is looked up in more than one of the active
trees (this would be documented and would have to be programmed explicitly, on
a SPECIFIC, case-by-case basis), but in general, in acquisition, parameters
are fetched / looked up in SPECIFIC parameter trees ONLY. More precisely,
 - if a parameter exists and is documented as a configuration (systemglobal)
 parameter, then you can NOT create a global or local (current) parameter
 with the same name and assume that this overrides the systemglobal value;
 - if an acquisition parameter is a documented to be global, then again you
 can NOT create a local (current) parameter with the same name and assume
 that this will override the global value;
 - similarly, you can NOT destroy a local parameter (or not create it if it
 were optional) and create a global parameter with the same name instead:
 PSG will ONLY look it up in the local (current) parameter tree.
There are several good reasons for doing things this way:
 - From a GLP point-of-view, you ideally want ALL acquisition parameters
 (active / in use) to be archived with an acquired data set; at "go" time,
 the current tree is copied over to the "processed" tree (and then archived
 with the FID);
 - the global tree is NOT copied over, nor is the "systemglobal" tree;
 - an exception to this is through "saveglobal": at "go time", global and
 systemglobal parameters listed in the "saveglobal" parameter (a global
 parameter by itself) are transferred to the "processed" tree, whereby an
 underscore character is appended to the name (e.g.: "loc" gets archived as
 "loc_", "lockfreq" gets archived as "lockfreq_"). This permits archiving
 parameters which are NOT experiment-specific or related to the system
 configuration settings.
 - there are a few additional exceptions, such as the systemglobal parameter
 "Console" (upper case "C") which is copied to a local parameter "console"
 (lower case "c") when "go", "ga", or "au" are called.
 - the main reason for the above exceptions is that you want to be able to
 recall a parameter or data set and re-acquire the data under the same
 conditions - but this should of course NOT alter your configuration
 settings: the lock frequency might have changed, or the existing data might
 have been acquired on a different system (frequency or architecture).
There might be rare instances of situations where you want to "step outside"
of the above scheme - see the article below.
 [Agilent MR News 2009-08-19]

CAN PARAMETER VALUES BE ENFORCED?

 As explained in the article above, VnmrJ acquisition does NOT apply any
parameter "hierarchy", but looks up parameters in specific trees only. Some
users felt that on their system they wanted to enforce specific settings for
parameters that are described as local (say, "temp=20") and thought of
defining a global parameter with that name instead. This idea is severely

flawed, because
 - if the MAGICAL hierarchy WOULD apply in acquisition (it does NOT!), the
 local parameter would have precedence anyway, overriding the global value;
 - to avoid this you would need to ensure that the local parameter (if it is
 defined) is destroyed, for the global parameter to be used;
 - unless that global parameter is added to "saveglobal", it would not be
 archived with the acquired data set, i.e., this opens a potential loophole
 for GLP non-compliance.
So, are there "legal" (feasible) ways to enforce parameter values? And if so,
can that enforced value be made configurable? Indeed, there are such options:
 - the mechanism used most commonly for such tasks is to add a construct such
 as
 exists('xyz','parameter'):$e
 if $e then xyz='some_value' endif
 to a macro "userfixpar" ("/vnmr/maclib/userfixpar" for all users, or
 "~/vnmrsys/maclib/userfixpar" on a per-user basis, whereby the latter will
 override "/vnmr/maclib/userfixpar", if defined). With this, whenever a
 parameter set is recalled, that parameter (if defined) will be set to the
 given value. Users can then still change that value prior to typing "go".
 - if you do NOT want the users to change that value on a case-by-case basis,
 you could add the above to a macro "usergo" (again, in "/vnmr/maclib" or
 local, as desired) - then it will be set at "go" time, and user settings
 will be ignored.
Especially the second mechanism should be used WITH CAUTION ONLY: think of a
system that is used for bio-NMR, and "all samples are always run at the same
temperature" - and then, one day you have that odd user who wants to run a
temperature array (say, for a kinetics study) - and will end up sweating blood
in trying to change the temperature, unaware of the fact that a "usergo" macro
enforces a specific "temp" value!
 In the above proposals, the enforced value is configurable ONLY by changing
the relevant macro. There are more straightforward ways (from an operator
point-of-view) to doing this, e.g., by expanding the above construct to
 exists('Xyz','parameter','global'):$eg
 if $eg then
 exists('xyz','parameter'):$e
 if not ($e) then
 create('xyz','flag')
 endif
 xyz=Xyz
 write('line3','usergo: value "xyz" set to %s from "Xyz", xyz)
 endif
(assuming the value is a string value). This way, you CAN now create a (user
settable) GLOBAL parameter (but with a DIFFERENT name!) from which the default
(enforced) value will be set. The extra feedback on line3 avoids confusion by
notifying the user / operator of the enforced setting. Still, such solutions
need to be clearly documented for all users (as well as for Varian service
personnel).
 NOTE: this is merely an example to indicate some of the possibilities that
exist in VnmrJ; we do NOT suggest that you handle "temp" this way, nor is this
a universal solution - e.g.: if the existing or the enforced value was an
array, this would almost certainly cause complications or failures - you would
not want to do this with parameters that can be arrayed.
 One option that one might consider in this context is to make a parameter
"non-alterable" through "setprotect" in order to prevent changes by the user -
however, this is NOT RECOMMENDED (at least not as a general recipe), as
 - there are several mechanisms (such as setting parameters through "setvalue"
 or by using the parameter as return argument for a VnmrJ command, see
 Agilent MR News 2009-07-17) that ignore / bypass parameter limits and
 protection bits;
 - if you protect parameters which some macro wants to alter, this will cause
 that macro to fail with an error message - such situations may be tricky to
 debug and fix.
Conclusion: you should not alter a parameter's protection bits unless you know
what you are doing!
 Overall, keep in mind that we most likely had good reasons to handle
parameter values the way we do - changing that philosophy is your personal
responsibility and may affect our ability to provide support! Also, be VERY
careful with enforcing parameter values relating to power handling (power
values, gradient strengths, amplifier settings, etc.), especially on systems
with high power gradient or RF amplifiers, or with Cold probes and/or dealing

sensitive samples: the PSG software in high resolution NMR spectrometers
features power and duty cycle checking, but these checks may fail or not be
accurate enough, and errors in power handling can have expensive consequences!
 [Agilent MR News 2009-08-19]

2009-09-03:

POTENTIAL ISSUE WITH FETCHING PARAMETER VALUES INTO A PULSE SEQUENCE:

 In Agilent MR News 2009-08-19 we posted a couple refresher / follow-up notes
on VnmrJ parameters, parameter hierarchy and related issues. This information
is now available on-line in a "FAQ" document "VnmrJ / VNMR Parameters" via our
"Software Corner" at
 http://www.varianinc.com/products/nmr/apps/corner.html
Bruce Adams (Merck Research Labs, Boston MA) reminded the editor of a
potential issue with fetching parameter values into pulse sequences that was
not covered in Agilent MR News so far: in Agilent MR News 2009-08-19 we
covered the VnmrJ tree hierarchy for parameters. Besides this hierarchical
structure, parameters are (independent of their position in the hierarchy)
also divided into distinct parameter GROUPS (as also discussed in the above
FAQ document), namely
 - acquisition parameters
 - processing parameters
 - display parameters
 - spin simulation parameters
 - sample parameters
 - "all" / "none" (not used)
Of these groups, the first three are used most frequently, and parameters in
these groups are present in both the "processed" and the "current" trees.
Technically, the "group membership" is just another parameter property that
you can find out about using
 display('parameter_name')
for parameters in the "current" tree, or using
 display('parameter_name','tree_name')
for parameters in other trees - and you can set a parameter's group using the
"setgroup" command.
 The parameter group mainly determines how and when parameters are moved
between VnmrJ parameter trees (see the aforementioned FAQ document). What
Bruce Adams is referring to, however, is a peculiarity that may occasionally
cause hiccups with using VnmrJ pulse sequences and has to do with differences
in the handling of acquisition parameters compared to parameters in other
groups (especially processing and display parameters):
 - arraying acquisition parameters causes the "array" (acquisition) parameter
 to be set (for an exception to this see below) - and therefore implies an
 arrayed acquisition / experiment. You can of course remove a parameter name
 from the "array" string value, which will leave the arrayed parameter as
 is, but will prevent the acquisition from performing an arrayed experiment.
 - arraying processing or display parameters has no effect on the "array"
 parameter and the acquisition in general.
 - beyond that, processing and display parameters are NOT "seen" by the
 "getval" PSG utility, yielding a "value not found" error message.
The tricky thing about the last point is that in VnmrJ you can type
 parameter_name?
and you WILL see the parameter's value (assuming it is in the current, global
or systemglobal parameter tree, as discussed in Agilent MR News 2009-08-19) -
but the pulse sequence will not read its value! In this situation you must
remember to check the parameter details with
 display('parameter_name')
as discussed above. This may sound exotic / convoluted - but it is rarely an
issue because the default parameter group is "acquisition", i.e., you need to
make a conscious decision to alter a new parameter's group, otherwise you are
unlikely to run into this problem.
 Apart from the effect this has on how a parameter is copied between trees
(you definitely would NOT want acquisition parameters to be handled the way
processing and display parameters are!), changing a parameter's group is NOT
a method to prevent arraying to set the "array" parameter! To achieve this,
you have two valid options:
 - enter a parameter array, but thereafter REMOVE that parameter's name from
 the string value in the "array" parameter;
 - alternatively and preferably, use "setprotect" to set protection but #8

 (value 256) for that parameter, e.g., using
 setprotect('parameter_name','on',256)
 (see also Agilent MR News 2003-03-03 for an example).
Finally, a lesson to be learned from this: DON'T try avoiding to create new
parameters by "abusing" an existing processing or display parameter for a new
pulse sequence! In particular, do NOT try using any of the parameters "r1" up
to "r7" or "n1" up to "n3", or a spin simulation parameter for acquisition
purposes / within a pulse sequence: this simply won't work!
 Thanks, Bruce, for suggesting that topic!
 [Agilent MR News 2009-09-03]

2011-03-14:

LITTLE KNOWN TOOLS FOR ARRAY HANDLING IN MAGICAL:

 In the last issue (Agilent MR News 2011-03-04) we showed how an improper
panel definition syntax could cause havoc with the direct entry of parameter
arrays in VnmrJ panel widgets - and we gave a recipe and examples for the
proper syntax that avoids such potential issues. In this follow-up note we
want to show you how you can use the associated MAGICAL syntax element on the
VnmrJ command line and in your macros. The editor would like to thank Dan
Iverson (Agilent, Santa Clara, CA) for this information.
 Traditionally, entering arrayed values could be tedious on the command line;
you had to enter the array by listing all values at once, e.g.:
 pw=5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
or in batches:
 pw=5,6,7,8,9,10,11,12,13,14
 pw[11]=15,16,17,18,19,20,21,22,23,24
This latter syntax can also be used to alter individual elements or a set of
consecutive elements in an array; note that using an array index on the
left-hand side of such an assignment statement assumes that the specified
array element or the preceding element already exist - otherwise an error will
be issued.
 At some point we added the "array" command in order to facilitate entering
linear arrays: the above array definition can be specified in one command:
 array('pw',20,5,1)
However, the "array" command only works for entering ENTIRE, linear arrays at
once, you cannot expand or amend existing arrays - and the direct entry of
array values with very small or very big numbers can be tedious, e.g.:
 gt1=0.0002,0.0004,0.0008,0.0016,0.0032,0.0064,0.00128,...
or
 gt1=2e-4,4e-4,8e-4,16e-4,32e-4,64e-4,128e-4,...
An additional MAGICAL utility for entering array values was introduced with
VnmrJ 1.1D in the context of VnmrJ panel layout definitions (see Agilent MR
News 2011-03-04): the "square bracket syntax" (NOT available with any VNMR
software version, nor with VnmrJ 1.1C or earlier releases) facilitates working
with arrays. The "core element" can be illustrated with the following sample
syntax
 val=[a,b,c,d]/e
yielding the same as
 val= a/e, b/e, c/e, d/e
Here, "val" is the name of a variable (e.g., "d2", or "$value"), "a" .. "d"
are numeric values, and "e" is either a numeric value or a numeric parameter.
The "[]" can enclose a single value or expression or an array of values or
expressions. Any mathematics applied to the "[]" element will be applied
individually to each element within the "[]". Some examples.
 Entry Result
 nt=[1] nt=1
 nt=[1,2,3] nt=1,2,3
 nt=[1,2,3]*10 nt=10,20,30
 nt=22*[2*3,r2+6,trunc(r3)]+2 nt=22*2*3+2,22*(r2+6)+2,22*trunc(r3)+2
As a side effect of this implementation, you can also use "[]" to specify the
precedence in expressions, just like "()". For instance,
 nt=[2*[3+4]]
yields "nt=14".
 Note that there are limitations if the "[]" element is used as part of a
mathematical expression, e.g.:
 - only a single "[]" element is allowed; an entry such as
 nt=[1,2]*[3,4]
 is not allowed - you would get an error message

 No more than one [--.--]
 - when used in expressions, the "[]" element cannot be mixed with the
 standard comma (,) arraying element, e.g.:
 nt=1,[2,3,4]*10
 is not allowed. You will get the error message
 Cannot combine , with [--.--]
These restrictions only occur if mathematical operators are used and the "[]"
element itself contains a comma. Simply listing multiple "[]" elements, or
combining them with the comma element is OK:
 Entry Result
 nt=[1,2],3 nt=1,2,3
 nt=[1,2],[3,4] nt=1,2,3,4
What also does NOT work is the following example:
 pw=8,9,10,11,12 p1=[pw]*2
or
 $val1=8,9,10,11,12 $val2=[$val1]*2
i.e., you can NOT place an arrayed variable inside the square brackets and
expect this to be taken for its arrayed values: in the above case "[pw]" will
simply be interpreted as "[pw[1]]" (and "[$val1]" as "[$val1[1]]"), hence "p1"
and $val2 in these examples will be set to 16. This appears to contradict the
syntax used in VnmrJ panels, as indicated in Agilent MR News 2011-03-04:
 Vnmr command: gt1=[$VALUE]/1e3
However, this is not the same environment, as in the context of VnmrJ panels,
the parameter "$VALUE" is substituted by its value BEFORE the expression is
evaluated, while in macros and on the command line, the square bracket syntax
is resolved / interpreted ALONG WITH (or maybe even before) variable values
are looked up. What WOULD work is
 pw=8,9,10,11,12
 p1=[pw[1],pw[2],pw[3],pw[4],pw[5]]*2
but that obviously defeats the idea of having a simplified syntax for array
handling. Of course, you can still use the "array" utility to REdefine the
complete parameter array rather than manipulating its values - as long as the
array is a linear sequence of numeric values. If you would like a similar
utility for entering / defining arrays with exponentially spaced values, there
is help: the editor has just (re-)posted his "maclib/xarray" contribution
which years ago used to exist inside a larger User Library package; for
details please visit the on-line User Library via our NMR Software Corner at
 http://www.chem.agilent.com/en-US/Support/Pages/default.aspx
 [Agilent MR News 2011-03-14]

==

