
McStasScript

Mads Bertelsen

July 26, 2019

1 Introduction

This document serves as the documentation for the McStasScript scripting language for python. Its
purpose is to generate McStas instrument files from python which is simply another way of writing
an instrument file. The main advantages is the possibility of using for-loops and that it can be used
directly from a python terminal. The simulation described by the instrument can be executed from
the scripting language and the data can be manipulated before plotting.

2 Installation

The package can be installed/updated through pip with the following terminal command.

1 python3 −m pip i n s t a l l McStasScript −−upgrade

Examples are available in the github repository. The package can also be obtained directly from
github, but in this case the the python path has to be set manually before importing, for example:

1 import sys
2 sys . path . append (’ /Users /madsberte l sen /PaNOSC/McStasScript ’) # Path to package

3 Importing the package

The code is structured as a python package where the classes and functions meant for the user is to be
imported. The important classes and functions are contained in the interface package, and are called
instr, plotter and functions.

1 from mcs ta s s c r i p t . i n t e r f a c e import i n s t r , p l o t t e r , f un c t i on s

4 Configuration

McStasScript needs to know where to find the McStas installation it should use. This information
is stored in a configuration file located with the python package, but can be updated through a
Configurator class. This configuration is permanent and is only done for first use or when updating
McStas. The default values are for a Mac running McStas version 2.5 and are shown here. The line
length is set for comfortable use in jupyter notebooks.

variable default
mcstas path /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/
mcrun path /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/
characters per line 93

1

The values are updated using the Configurator class which is loaded from the interface package. Here
they are updated to values appropriate for an Ubuntu system.

1 my conf igurator = func t i on s . Conf igurator ()
2 my conf igurator . s e t mcs ta s path (”/ usr /bin /”)
3 my conf igurator . set mcrun path (”/ usr / share /mcstas /2 .5/ ”)
4 my conf igurator . s e t l i n e l e n g t h (120)

5 Documentation

This section describes the classes and their methods.

class McStas instr

Holds methods for creating a McStas instrument file

Initiating an instance of the class requires a name to be given as the first argument and two optional
keyword arguments currently supported, allowing information on the author an origin of the code. In
the table below the positional arguments are above the dotted line and the keyword arguments are
below.

input type explanation
first argument string name of the instrument
author string name of the author
origin string origin of the work
mcrun path string path to local mcrun (overwrites default from config file)
mcstas path string path to mcstas directory (overwrites default from config file)

Below an instance called detector will contain an instrument called ”LOKI detector” while the instance
named example has a instrument named test with a specified author.

1 de t e c t o r = i n s t r . McStas ins t r (”LOKI detector ”)
2 example = i n s t r . McStas ins t r (” t e s t ” , author=”Mads Ber t e l s en ”)

McStas instr method add parameter

Adds input parameter to instrument, uses class parameter variable

input type explanation
first argument (optional) string variable type
second argument string name of the parameter
value any default value for the parameter
comment string comment that will be displayed with the variable

Here four different parameters are added to the instrument file using the different allowed keywords.

1 de t e c t o r . add parameter (”wavelength”)
2 de t e c t o r . add parameter (”double ” , ” he ight ” , va lue =1.0 , comment=”Height in [m] ”)
3 de t e c t o r . add parameter (” s t r i n g ” , ” r e f l e c t i o n f i l e n am e ” , comment=”Stored r e f l e c t i o n s ”)
4 de t e c t o r . add parameter (” s t r i n g ” , ” data f i l ename ” , va lue=”\”data . dat \”” , comment=”Data”)

The two first variables called wavelength and height are of the default type because no type was given.
In McStas the default type is a double. The height variable was given a default value and a comment.
The refelction filename and data filename are both specified to be strings and the latter was given a
default value, note the \” needed to insert the quotation marks into strings.

2

McStas instr method show parameters

Shows currently defined parameters in the instrument

This method is useful when running the simulation to get an overview of the available instrument
parameters.

1 de t e c t o r . show parameters ()
2 wavelength
3 double he ight = 1 .0 // Height in [m]
4 s t r i n g r e f l e c t i o n f i l e n am e // Stored r e f l e c t i o n s
5 s t r i n g data f i l ename = ”data . dat” // Data

McStas instr method add declare var

Adds declared variable to the instrument file

input type explanation
first argument string variable type
second argument string name of the parameter
value any value for the parameter (can be array)
array int length of array
comment string comment that will be displayed with the variable

Here four different variables are added to the instrument file using some of the different allowed
keywords.

1 de t e c t o r . add dec l a r e va r (” double ” , ” energy ”)
2 de t e c t o r . add dec l a r e va r (” i n t ” , ” f l a g ”)
3 de t e c t o r . add dec l a r e va r (” double ” , ” tube rad iu s ” , va lue =0.013)
4 de t e c t o r . add dec l a r e va r (” double ” , ” d i sp lacements ” , array=7)
5 de t e c t o r . add dec l a r e va r (” double ” , ” t a r r ay ” , array=4, va lue =[0.65E−6, 0 .65E−6, 1E−6])

When declaring an array the array keyword must be used even when setting the values. The values
are given as a python array as shown in the last example. The declared variables will appear in the
declare section of the instrument file.

McStas instr method append initialize

Adds line of code to initialize section

This methods adds a line of text to the initialize section of the McStas file and has no keyword
arguments. A similar method called append initialize no new line exists for adding to the same line
with multiple calls.

1 de t e c t o r . a p p e n d i n i t i a l i z e (” energy=pow(2∗PI/wavelength∗K2V, 2) ∗VS2E ; ”)

McStas instr method show components

Shows currently available McStas components

Before adding components to our instrument, it is nice to get an overview of the available components.
The method show components can be called without arguments, and will show the available categories
of McStas components such as sources, optics and samples.

input type explanation
first argument string name of category to show components in

3

By specifying a category, the components in that category is shown.

1 de t e c t o r . show components (” samples ”)

1 Here are a l l components in the samples category .
2 Incoherent Phonon simple Res sample S i n g l e c r y s t a l
3 I so t rop i c Sqw Powder1 Sans sphere s TOFRes sample
4 Magnon bcc PowderN SasView model Tunnel ing sample

McStas instr method component help

Shows parameters, their defaults and an explanation for given component

input type explanation
first argument string name of component

The text is shown with some additional formatting highlighting which parameters are required and
optional, along with what the default values are. This information is loaded directly from the local
component file, and any component in the work directory will take priority over the standard version.

1 de t e c t o r . component help (”Phonon simple ”)

1 Help Phonon simple
2 rad iu s [m] // Outer rad iu s o f sample in (x , z) plane
3 yhe ight [m] // Height o f sample in y d i r e c t i o n
4 s igma abs [barns] // Absorption c r o s s s e c t i o n at 2200 m/ s per atom
5 s igma inc [barns] // Incoherent s c a t t e r i n g c r o s s s e c t i o n per atom
6 a [AA] // f c c La t t i c e constant
7 b [fm] // Sca t t e r i ng l ength
8 M [a . u .] // Atomic mass
9 c [meV/AAˆ(−1)] // Ve loc i ty o f sound

10 DW [1] // Debye−Waller f a c t o r
11 T [K] // Temperature
12 t a r g e t x = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . Transverse coo rd inate
13 t a r g e t y = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . Ve r t i c a l coo rd inate
14 t a r g e t z = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . S t r a i gh t ahead .
15 t a r g e t i nd ex = 0 [1] // r e l a t i v e index o f component to f o cus at , e . g . next i s +1
16 f o c u s r = 0 [m] // Radius o f sphere conta in ing ta r g e t .
17 focus xw = 0 [m] // ho r i z . dimension o f a r e c t angu l a r area
18 f o cus yh = 0 [m] // ver t . dimension o f a r e c tangu l a r area
19 focus aw = 0 [deg] // ho r i z . angular dimension o f a r e c t angu l a r area
20 f o cus ah = 0 [deg] // ver t . angular dimension o f a r e c tangu l a r area
21 gap = 0 [meV] // Bandgap energy (unphys i ca l)
22 −−−

McStas instr method add component

Method for adding a new component to the instrument file

A McStas component describes a part of the instrument including its position and rotation in space.
When adding a new component in McStasScript the name and type must be specified. The add component
method returns the appropriate component object that can be manipulated directly, but it is also pos-
sible to manipulate through methods in McStas Instr. Most commonly a component is added to the
end of an instrument file, but the keyword arguments before or after can be used to place the compo-
nent before/after a previously specified component. All component classes are dynamically generated
based on components in your local McStas installation and in the python work directory, and in this
way have all input parameters as class atributes.

4

input type explanation
first argument string name of the component instance
second argument string name of the component to use
AT float list[3] position in (x,y,z)
AT RELATIVE string name of earlier component used as reference for position
ROTATED float list[3] rotation around (x,y,z)
ROTATED RELATIVE string name of earlier component used as reference for rotation
RELATIVE string name of earlier component used as reference
before string name of component this component should be before
after string name of component this component should be after
WHEN string WHEN statement (McStas keyword)
EXTEND string EXTEND c code (McStas keyword)
GROUP string GROUP name (McStas keyword)
JUMP string JUMP string (McStas keyword)
SPLIT int SPLIT value (McStas keyword)
comment string comment that will be displayed with the variable

A component in McStas needs a name, which is the first argument. The second argument select what
component should be used from the component library. Below are some examples of simple use.

1 de t e c t o r . add component (”Orig in ” , ”Arm”)
2 s r c = de t e c t o r . add component (” source ” , ” Source s imple ” , RELATIVE=”Orig in ”)
3 de t e c t o r . add component (” beam extract ion ” , ”Guide grav i ty ” ,
4 AT=[0 , 0 , 2] , RELATIVE=” source ”)

Here src would by a python object that can be modified to change the source. If one wishes to insert
another component between the source and beam extraction it can be done with the before or after
keyword.

1 de t e c t o r . add component (” p r e g u i d e s l i t ” , ” S l i t ” , b e f o r e=” beam extract ion ” ,
2 AT=[0 , 0 , 1] , RELATIVE=” source ” , comment=” S l i t b e f o r e the guide ”)

McStas instr method print components

Method for printing current list of components to the terminal

To check that the components defined in the documentation so far are in the expected order, the
print components method is demonstrated. Data on the rotation of components is normally included
but is omited here. This method has no arguments.

1 de t e c t o r . pr int components ()
2 Orig in Arm AT [0 , 0 , 0] ABSOLUTE
3 source Source s imple AT [0 , 0 , 0] RELATIVE Orig in
4 p r e g u i d e s l i t S l i t AT [0 , 0 , 1] RELATIVE Orig in
5 beam extract ion Guide grav i ty AT [0 , 0 , 2] RELATIVE source

McStas instr method set component parameter

Method for setting parameters of a component using a dictionary

This methods sets the parameters of a defined component using a python dictionary.

input type explanation
first argument string name of the component instance to modify
second argument dict dictionary with parameter names and values

5

It is possible to add several parameters in one call, and new calls add further parameters.

1 de t e c t o r . set component parameter (” source ” , {”xwidth” : 0 . 12 , ”E0” : ” energy ” })
2 de t e c t o r . set component parameter (” source ” , {” yhe ight ” : 0 . 12})

An error will occur if the given parameter name does not match a parameter in the component type.

McStas instr method print component

Method for printing information contained in defined component

This method takes the name of a component and prints the current information. We can check that
the parameters and position of a component has been registered correctly.

1 de t e c t o r . print component (” source ”)
2

3 COMPONENT source = Source s imple
4 yhe ight = 0.12 [m]
5 xwidth = 0.12 [m]
6 E0 = energy [meV]
7 AT [0 , 0 , 0] RELATIVE Orig in
8 ROTATED [0 , 0 , 0] RELATIVE Orig in

This is not intended for copy-pasting into McStas instruments as the syntax is not correct. Generation
of the instrument file is covered later in the documentation. The units are collected from the header
file of the component definition. If a required parameter has not yet been specified, the user will be
reminded when using this method.

McStas instr method set component AT

Method for updating position of a component

There are a range of methods for updating information on a component after it has been defined. The
syntax is similar to the original call for add component in all cases.

input type explanation
first argument string name of component to modify
first argument float list[3] position in (x,y,z)
RELATIVE string name of earlier component used as reference for position

1 de t e c t o r . set component AT (” source ” , [0 . 0 1 , 0 , 0])

McStas instr method set component ROTATED

Method for updating rotation of a component

input type explanation
first argument string name of component to modify
first argument float list[3] rotation around (x,y,z)
RELATIVE string name of earlier component used as reference for rotation

1 de t e c t o r . set component ROTATED(” beam extract ion ” , [0 , 2 . 0 , 0] , RELATIVE=”Orig in ”)

McStas instr method set component RELATIVE

Method for updating RELATIVE reference for both position and rotation

6

This method will override both positional relative and rotational relative. It has no keyword argu-
ments.

1 de t e c t o r . set component RELATIVE(” beam extract ion ” , ” p r e g u i d e s l i t ”)

After these updates the output from print components is shown again to see the changes.

1 Orig in Arm AT [0 , 0 , 0] ABSOLUTE
2 source Source s imple AT [0 . 0 1 , 0 , 0] RELATIVE Orig in
3 p r e g u i d e s l i t S l i t AT [0 , 0 , 1] RELATIVE Orig in
4 beam extract ion Guide grav i ty AT [0 , 0 , 2] RELATIVE p r e g u i d e s l i t

1 Orig in Arm ROTATED [0 , 0 , 0] ABSOLUTE
2 source Source s imple ROTATED [0 , 0 , 0] RELATIVE Orig in
3 p r e g u i d e s l i t S l i t ROTATED [0 , 0 , 0] RELATIVE Orig in
4 beam extract ion Guide grav i ty ROTATED [0 , 2 . 0 , 0] RELATIVE p r e g u i d e s l i t

McStas instr method set component WHEN

Method for setting WHEN condition on component

The input for this method is a string, which should be a c logical expression involving variables defined
in declare and the state parameters of the neutron.

1 de t e c t o r . set component WHEN(” beam extract ion ” , ”vx > 0”)

McStas instr method append component EXTEND

Method for adding a line to the extend section of a component

The EXTEND section adds additional code to a McStas component and its scope includes variables
declared in the instrument file and the component. The number of scattering events in a component
can for example be saved to an external parameter using the SCATTERED keyword. Two events are
subtracted since entering and leaving the guide counts as a scattering event.

1 de t e c t o r . append component EXTEND(” beam extract ion ” , ” n s c a t t e r i n g = SCATTERED − 2”)

McStas instr method set component GROUP

Method for setting GROUP name of a component

The GROUP keyword is used to make a number of components parallel in the execution, however the
order still matters. Could for example be used if several guides were simulated after the source, and
each of these would be in the same group.

1 de t e c t o r . set component GROUP(” beam extract ion ” , ” gu ides ”)

McStas instr method set component JUMP

Method for setting JUMP statement of a component

The JUMP keyword is an advanced feature of McStas that is similar to a goto. The string given to
the method should contain everything after JUMP in the McStas keyword line, so for example with
the syntax below. Here there is no point in iterating over a guide, and merely shows the syntax.

1 de t e c t o r . set component JUMP (” beam extract ion ” , ”myse l f i t e r a t e 3”)

McStas instr method set component SPLIT

7

Method for setting SPLIT value of a component

The McStas SPLIT keyword will split the ray going into a component into a given number of rays whos
total weight is equal to the initial weight. This is useful for example when a complex guide system
takes a lot of computation time and the sample has Monte Carlo choices. It is always important
that the component after the split has Monte Carlo choices, as the same ray will otherwise just be
simulated in an identical manner many times, ultimately achieving the same result with more time
spent.

1 de t e c t o r . set component SPLIT (”powder sample” , 300)

McStas instr method set component comment

Method for updating the comment on a component

It is also possible to add a comment to a component after it was defined.

McStas instr method set component comment

Method for updating the comment on a component

It is also possible to add a comment to a component after it was defined.

1 de t e c t o r . set component comment (” beam extract ion ” , ” Simulat ing s eve r e misal ignment ”)
2 de t e c t o r . print component (” beam extract ion ”)
3 // Simulat ing s eve r e misal ignment
4 COMPONENT beam extract ion = Guide grav i ty
5 AT [0 , 0 , 2] RELATIVE p r e g u i d e s l i t
6 ROTATED [0 , 2 . 0 , 0] RELATIVE p r e g u i d e s l i t

McStas instr method write c files

Methods for writing c files to folder named generated includes

This method will write c files describing the declare, initialize and trace sections of the generated
instrument.

1 de t e c t o r . w r i t e c f i l e s ()

These can then be included in another McStas file. This is useful as this python tool is most often used
to generate large repeating part of an instrument that can then be included in a regular instrument
file. The instrument file can include them using the %include keyword from McStas as shown below.

1 DECLARE
2 %{
3 // inc lude parameters dec l a r ed from generate LOKI parts . py
4 %inc lude ” g ene r a t ed i n c l ud e s / LOKI detector dec la re . c”
5 %}
6

7 INITIALIZE
8 %{
9 // inc lude i n i t i a l i z a t i o n code from generate LOKI parts . py

10 %inc lude ” g ene r a t ed i n c l ud e s / LOKI d e t e c t o r i n i t i a l i z e . c”
11 %}
12

13 TRACE
14 // inc lude components from generate LOKI parts . py
15 %inc lude ” g ene r a t ed i n c l ud e s /LOKI detector component trace . c”

8

McStas instr method write full instrument

Writes the full instrument file with name defined in original McStas instr call

This method instead writes the entire instrument file using the provided information.

1 de t e c t o r . w r i t e f u l l i n s t r umen t ()

McStas instr method run full instrument

Runs McStas simulation of defined instrument and returns array of McStasData objects

This methods runs the simulation using the mcrun commands of the system and returns the resulting
data as a array of McStasData objects. Normally an error will occur if the fodldername already exists,
but using the increment folder name keyword parameter the foldername can be updated automatically
to avoid this.

input type explanation
foldername string name of folder that will be created for data
parameters dict Dictionary with input parameters and their values
ncount int Number of rays to simulate
mpi int Number of mpi threads to use for simulation
custom flags string Custom mcstas flags added to mcrun launch command
mcrun path string Absolute path to mcrun (overwrites path from config file)
increment folder name bool If true, increments data folder name automatically
suppress output bool If True, no text output will be shown

1 data = de t e c to r . r un f u l l i n s t r umen t (fo ldername=”data1” ,
2 parameters= {”wavelength” : 5 . 1 } ,
3 ncount=1E7 , mpi=2)

McStas instr method show instrument

Shows McStas instrument using mcdisplay

This method calls the mcdisplay command which will display a geometrical representation of the
instrument. The standard method will open a new tab in a browser with a 3D view of the instrument.

input type explanation
parameters dict Dictionary with input parameters and their values
format str ”web-gl” provides 3D tab in browser, ”window” opens window with 2D views

1 data = de t e c to r . show instrument (format=”window” , parameters={” he ight ” : 0 . 8})

class McStasData

Holds a single McStas data set in either 1D or 2D

A class to handle data from McStas simulations in a transparent way which provides easy access to
manipulation of the data. The included data is located in the following variables

9

variable type explanation
Intensity float array Numpy array containing intensity
Error float array Numpy array containing error on intensity
Ncount int array Numpy array containing number of rays in each pixel
xaxis float array Numpy array of xaxis if data is one dimensional
metadata metadata class Contains necessary meta data
plot options plot options class Preferences for plotting the data

McStasData method set xlabel

Sets the xlabel of a data set

Method for setting xlabel on a data set, similar methods exists for ylabel and title with same syntax.

1 data [0] . s e t x l a b e l (”custom x l ab e l [m] ”)

McStasData method set plot options

Sets plotting preferences for data set

Plotting options are associated with the data set instead of being given during the plotting. All plot
options are given as a dictionary input. Currently the following are available.

name type explanation
log bool or int plot on logarithmic scale
orders of mag float maximum orders of magnitude for colorscale
colormap string name of colormap to be used
cut max float cut top of data, 1 is all data
cut min float cut bottom of data, 1 is all data
left lim float lower limit of plot
right lim float higher limit of plot
top lim float top limit (Only 2D)
bottom lim float bottom limit (Only 2D)
x axis multiplier float Multiplier for xaxis, for example change unit
y axis multiplier float Multiplier for yaxis, for example change unit

1 data [0] . s e t p l o t o p t i o n s (l og=True , colormap=”hot”)

It is often simpler to access the data using the name of the monitor rather than the index, which
can be done using the function name search. The function will also find the data if the filename is
given instead of the component name.

1 PSD sample = func t i on s . name search (”PSD sample” , data)
2 PSD sample . s e t p l o t o p t i o n s (l og=True , colormap=”hot”)

Since setting the plot options will be a very frequent operation, a function is provided for this particular
operation.

1 f un c t i on s . name p lot opt ions (”PSD sample” , data , l og=True , colormap=”hot”)

In most circumstances McStasData objects will be returned from simulations performed with Mc-
StasScript, but it is possible to load a data folder that contains a mccode.sim file and the associated
data. The returned data is a list of McStasData objects.

1 data = func t i on s . l oad data (” data fo lder name ”)

10

class make plot

plots single McStasData object or an array of these

Class for simple plotting of McStasData objects. Will be expanded over time to contain more control
over the resulting plots. Currently only the initialization is done so the returned object has no useful
methods.

input type explanation
first argument McStasData array data to be plotted

Here all data in the array data is plotted according to the preferences stored in the plot options class
of each data set.

1 p lo t = p l o t t e r . make plot (data)

class make sub plot

plots single McStasData object or an array of these as subplots

Class for simple plotting of McStasData objects in one window. Will be expanded over time to contain
more control over the resulting plots. Currently only the initialization is done so the returned object
has no useful methods.

input type explanation
first argument McStasData array data to be plotted

Here all data in the array data is plotted according to the preferences stored in the plot options class
of each data set.

1 p lo t = p l o t t e r . make sub plot (data , l og =[1 , 0 , 1] , max orders of mag =[10 ,2 , 4])

5.1 Advanced use

The parts of the api covered by the documentation so far is the simplest way of using the API, but
some additional methods in the McStas instr are useful for experienced python users that want more
direct access to the underlying classes.

McStas instr method get component

Returns the component class instance of a selected component

It is possible to get direct access to the component instances inside the McStas instr instance for direct
manipulation. This can make the syntax a bit shorter in some cases.

1 gu i d e p i e c e = de t e c t o r . get component (” beam extract ion ”)

McStas instr method get last component

Returns the component class instance of the last component in the component sequence

Same as get component but no argument is needed when returning the last component of the sequence.

1 gu i d e p i e c e = de t e c t o r . ge t l a s t component ()

class component

Holds information on a component and methods for updates and writing to file

11

The component class is used as a superclass for each component type added to the instrument. The
subclass for a specific component type also includes attributes for each parameter of the component,
and these can be changed directly. The class is frozen after initialize so no new attributes can be
created, and in this way misspelled parameter names are caught on user input. Most of the methods
contain in the component class are just passed directly to the McStas instr and thus does not require
further explanation, they are however listed here for completeness.

component method show parameters

Equivalent to component help in McStas instr, also shows changed parameters

component method show parameters simple

Same information as show parameters, but without use of ANSI colors

component method set AT

Equivalent to set component AT in McStas instr

component method set ROTATED

Equivalent to set component ROTATED in McStas instr

component method set RELATIVE

Equivalent to set component RELATIVE in McStas instr

component method set parameters

Equivalent to set component parameter in McStas instr

component method set comment

Equivalent to set component comment in McStas instr

component method freeze

Freezes the object, an error will occur if new attributes are added

component method unfreeze

Unfreezes the object, new attributes can be added

component method write component

Writes the component to file

input type explanation
first argument file identifier file identifier ready for writing

component method print long

Prints information on the component to the terminal

6 Discussion

This section contains discussion on the python module.

12

6.1 Possible improvements / requests

Features that are still missing and should be added. Also keeps track of user requests.

6.1.1 Add code to trace

It should be possible to add code directly to trace, for example include statements. The position of
this code should be relative to components.

6.1.2 FINALLY

Should be possible to add code to the FINALLY section which is ignored so far.

6.1.3 Limits on parameters

Allow user to easily set limits on parameters and generate appropriate input sanitation for instrument
file with error message.

6.1.4 Methods for removing parameters / variables / components

When using the software from a terminal it could be useful to remove components. Might also be
useful to be able to move a component to another location in the sequence.

6.2 Jupyter notebook experience

It is entirely possible to write an instrument file from a jupyter notebook using this tool, but at this
point it behaves more like a script, and thus there is no inherent benefit. The main issue is that
rerunning a cell will cause errors because the same components are added again, and they recognize
the names are not unique. Should instead allow to update components when the same name is used,
but this adds a severe risk of users replacing an earlier component instead of creating a new.

Another issue is the lack of feedback beyond printing all added components. A simple improvement
would be to have a method that prints all changes since last print was executed, which would be a
natural end of each cell.

13

