Veusz - a scientific plotting package

Jeremy Sanders

Veusz - a scientific plotting package
Jeremy Sanders
Copyright © 2017

Thisdocument is licensed under the GNU General Public License, version 2 or greater. Please see the file COPY ING for details, or see http://
www.gnu.org/licenses/gpl-2.0.html.

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

Table of Contents

O [gL oo (0 1o o RO OO PP PO UOUPPTRUPPPPIN 1
VIBUSZ ...ttt et ettt ra e 1
LIS 10011 070] Lo o | PP SPPPPTI 1

AT/ Te (o TP PTTRP 1
Settings: properties and FOrMELTINGoiereieiii e 3
DALBSELS ... ettt e et 4
LI PP UPPTPP 4
IMIBBSUIEIMENTS ...ttt ettt e e e e e e et e et e e et n e e e e e e eenas 5
L600] [0 g 11 11 ST PPTTN 5
AXIS NUMENTC SCAIES ...eeitiie ettt ettt ettt e e ettt e ettt bt e e ettt e e e eata e e eentaaaaees 5
FgEs = 1 = o] o PP PP PPPPT 6
THE MEIN WINCOW ...ttt ettt e e et e ettt e e e e ebe e e e eba s 6
MY FITSE PIOL <. ettt e e et e et e 7
2. REBAING GBI ...ttt ettt ettt ettt e s 9
Standard TEXE IMPOIT ...ttt ettt e e ettt e e et et e e e e et e e e eabreeeennnaaeeen 9
Data types in tEXE IMPOITceeeei ettt e e et e e e e e 10
(D= el g o] (0] £ TSP TPPPTTR 10
GOV 1B e 11
HDIFD fIl8S ettt ettt et ettt e e e e e e ene 11
EITOE DS ..ot 12
Sl ettt 12
2D A FBNGES .. eete ettt ettt ettt e e et e et et ettt e e e aa s 12
D (= PSP PPPPTPRUPPPPN 12
2D tEXt OF CSV FOMMEL ...eeiteiiei ettt ettt ettt et et e e e rb e e enens 12
L I IS 1= SO PSPPSRI 13
Reading other data fOMMEESooiieiieei et 13
MaNIPUIBEING GAEBSELSeevu ettt ettt ettt e e et et e e e ee e e e enan s 14
USING daESEL PIUGINSeeeeie ettt ettt e e et e et e e e e e e e enanas 14
Using expressions to Create NEW AataSelSuuuiiiiieieiiiii et 14
Linking datasetS 10 EXPrESSIONSiieitn i eieiii ettt e ettt et et e et et et et e e e et e e enaa e eenees 15
S o[(] 0o o - ¢ TSP PTT R PPPPPT 15
Defining new coNStants OF TUNCLIONSuuuiiiiiie et 15
DAtasat PIUGINSeeetieeeeii ettt ettt et et et a e e enaa s 15
10701 (011010 o = - NPT PP PR 15

3. ComMANd [N INEEITACE ... e et et e et e et e e e eba e eeees 17
Fg11goTo (8 oi (oo EO TSP SPPRN 17
1600]07] 0172 010 PSPPSR PPPPRTRUPPPIN 17

o 1o RO TP PPT O TPPPPTR 17
o (o TP PPTTRPPPPTT 17
F Yo [0 (11 (oo EO PP PP TPPPRT 17
AdAIMPOITPELN ...t 18
ClIONBWILGEL ...ttt ettt ettt e et e e e et e e e enan e aees 18
L6 [0 S = PP PP PP PPPPT 18
CrealEHISIOOIAIM ...ttt e et e ettt e ettt e e e e e 18
DALASEEPIUGIN ...ttt ettt et 18
ENaDIETOOIDANee e 18
o0 1 PRSPPI 18
FIITEIDABSELS ... ettt ettt et 19
FOTCEUPTEALE ...ttt ettt ettt e e et e ettt e e e e nbneeeenbaaeeees 19
L€ PP PP PP PPPPTRRPPPIN 19
€1 (0211 [0 1 o PSP PPPPTTRSPPIN 19
(€= (O[T ol TP PPPPTR 19
(€1 (600] 0] 107 'o JEUUNR ST PP UPPPTTPPPPIN 19
LCc (DL - L ST PT P PSPP PP 20
GEIDBIATYIE ..ttt et et 20

Veusz - ascientific plotting package

€T (DT = = (TP P 20

L PP 20
0] T = 20

F 0T LT =22 0 20

T 00T T LT = Y PPN 21

F 0T T LT = | L P 21

FaaT 7o T LT = | PPN 22

T aaT o LT = 1o 1 o T 22

T T ST = 23
] 1 o PN 23
g0 1o 124 L 23

F g T (e N PN 23

LS e = PSPPSR 24

T PP 24

[0 7o PSP 24
MOVET OPAOE ...t e e e e e e e et e e e en 24

RS L0z o D - - PP 24
RENBIME ... et 24

LS 1110 PP 24

LS =AY T o 0 SRR 24

S U 25

S PSPPI 25

S 7 11 =" 1o 25

IS 1D - L PP 25

S C DL = b o 1= o N 25

S 1 - 7= | D U 25
SEIDBIARANGE ... vueete ettt 25

S (D = 2] PP 26

S C DL = 4 B] (o1 o o P 26
SEtDAA2DEXPIESSIONXY Z ..eeiciiieii et e e et aaaae 26
SEtDABZDXY FUNC ...eevtiie ettt et e et e e et e e e et e e e et e e e e et e e e e aan s 26

S (B t= D = =] 01T PP 26

R D= 1=] = PP 26
SETOREFBIENCE ...t et ettt e e e eanas 26

S C (U100 = (= 01 0= VPN 27

SEEV BII0SE ... 27

S 1S = oo 100 LY AT PP 27
TAODALASELS ... eeeti ettt 27

L1 TSP 27

L | PP 27
WWAITFOTCIOSE ...ttt ettt e e et e et e e e et e e e e at e e e e et neeeaeaaeeennes 27

4 o o 1 | PP 28

= o1 11 YN 28
4, UsiNg VeUSZ from OthEr PrOgraMS ...uuiiii e et e e e e e e e e e e e e e e e e et e e et e e et e e aaeeeens 29
NON-Qt PYthON PrOgramScuuuiiii e e e e e e e e e e e e e e e et e e et e e et e e st e e et eeanaaees 29
Older path-based INEIAaCEuuiiii e e 29
New-style ObJECT INLEITACEe i e e 30
Trandating Old 0 NEW SEYIEiie e 33
V(@ o 0T = 0 4 PP 34
N Lo T Yy Vo g T o T | = 1= 34
OO - 0o [o 1 1 ! APPSR 34

Chapter 1. Introduction

Veusz

Veusz is a scientific plotting package. It was designed to be easy to use, easily extensible, but powerful. The
program features agraphical user interface, which works under Unix/Linux, Windows or Mac OS X. It can also be
easily scripted (the saved file formats are similar to Python scripts) or used as module inside Python. Veusz reads
data from a number of different types of datafile, it can be manually entered, or constructed from other datasets.

In Veusz the document is built in an object-oriented fashion, where adocument is built up by anumber of widgets
inahierarchy. For example, multiple function or xy widgets can be placed inside a graph widget, and many graphs
can be placed in agrid widget.

Thetechnologies behind VVeusz include PyQt (avery easy to use Python interfaceto Qt, whichisused for rendering
and the graphical user interface, GUI) and numpy (apackage for Python which makesthe handling of large datasets
easy). Veusz can be extended by the user easily by adding plugins. Support for different data file types can be
added with import plugins. Dataset plugins automate the manipulation of datasets. Tools plugins automate the
manipulation of the document.

Terminology

Here we define some terminology for future use.
Widget

A document and its graphs are built up from widgets. These widgets can often by placed within each other, de-
pending on the type of the widget. A widget has children (those widgets placed within it) and its parent. The wid-
gets have a number of different settings which modify their behaviour. These settings are divided into properties,
which affect what is plotted and how it is plotted. These would include the dataset being plotted or whether an axis
islogarithmic. There are also formatting settings, including the font to be used and the line thickness. In addition
they have actions, which perform some sort of activity on the widget or its children, like "fit" for afit widget.

As an aside, using the scripting interface, widgets are specified with a "path", like a file in Unix or Windows.
These can be relative to the current widget (do not start with a slash), or absolute (start with a slash). Examples
of pathsinclude, "/pagel/graphl/x", "x" and ".".

The widget typesinclude

1. document - representing a complete document. A document can contain pages. |n addition it contains a setting
giving the page size for the document.

2. page - representing a page in a document. One or more graphs can be placed on a page, or agrid.

3. graph - defining an actual graph. A graph can be placed on a page or within agrid. Contained within the graph
areits axes and plotters. A graph can be given a background fill and a border if required. It also has a margin,
which specifies how far away from the edge of its parent widget to plot the body of the graph.

A graph can contain several axes, at any position on the plot. In addition agraph can use axes defined in parent
widgets, shared with other graphs.

More than one graph can be placed within in a page. The margins can be adjusted so that they lie within or
besides each other.

4. grid - containing one or more graphs. A grid plots graphs in a gridlike fashion. Y ou can specify the number
of rows and columns, and the plots are automatically replotted in the chosen arrangement. A grid can contain
graphs or axes. If an axisisplaced in agrid, it can be shared by the graphsin the grid.

Introduction

5. axis - giving the scale for plotting data. An axis trandlates the coordinates of the data to the screen. An axis
can be linear or logarithmic, it can have fixed endpoints, or can automatically get them from the plotted data.
It also has settings for the axis labels and lines, tick labels, and major and minor tick marks.

An axis may be "horizontal" or "vertical" and can appear anywhere on its parent graph or grid.
If an axis appears within agrid, then it can be shared by all the graphs which are contained within the grid.
The axis-broken widget is an axis sub-type. It is an axis type where there are jumps in the scale of the axis.

The axis-function widget allowsthe user to create an axis where the values are scaled by amonotonic function,
allowing non-linear and non-logarithmic axis scales. The widget can also be linked to a different axis viathe
function.

6. plotters - types of widgets which plot data or add other things on a graph. There is no actual plotter widget
which can be added, but several types of plotterslisted below. Plotterstypically take an axis as a setting, which
isthe axis used to plot the data on the graph (default x and y).

a. function - a plotter which plots a function on the graph. Functions can be functions of x or y (parametric
functions are not done yet!), and are defined in Python expression syntax, which is very close to most other
languages. For example "3*x**2 + 2*x - 4". A number of functions are available (e.g. sin, cos, tan, exp,
log...). Technically, Veusz imports the numpy package when evaluating, so numpy functions are available.

Aswell as the function setting, also settable is the line type to plot the function, and the number of stepsto
evaluate the function when plotting. Filling is supported above/below/Ieft/right of the function.

b. xy - aplotter which plots scatter, line, or stepped plots. This versatile plotter takes an x and y dataset, and
plots (optional) points, in a chosen marker and colour, connecting them with (optional) lines, and plotting
(optional) error bars. An xy plotter can also plot a stepped line, allowing histograms to be plotted (note that
it doesn't yet do the binning of the data).

The settings for the xy widget are the various attibutes for the points, line and error bars, the datasets to
plot, and the axes to plot on.

The xy plotter can plot alabel next to each dataset, which is either the same for each point or taken from
atext dataset.

If you wish to leave gapsin a plot, the input value "nan" can be specified in the numeric dataset.

c. fit - fitafunction to data. This plotter is alike the function plotter, but allows fitting of the function to data.
Thisisachived by clicking on a"fit" button, or using the "fit" action of thewidget. The fitter takesafunction
to fit containing the unknowns, e.g. "a*x**2 + b*x + ¢", and initial values for the variables (here a, b and
c). It then fits the data (note that at the moment, the fit plotter fits al the data, not just the data that can be
seen on the graph) by minimising the chi-squared.

In order tofit properly, they data (or X, if fitting as afunction of x) must have a properly defined, preferably
symmetric error. If there is none, Veusz assumes the same fractional error everywhere, or symmetrises
asymmetric errors.

Note that more work is required in this widget, asif a parameter is not well defined by the data, the matrix
inversioninthefit will fail. In addition V eusz does not supply estimatesfor the errors or thefinal chi-squared
in a machine readable way.

If the fitting parameters vary significantly from 1, then it isworth "normalizing" them by adding in afactor
in the fit equation to bring them to of the order of 1.

d. bar - abar chart which plots sets of data as horizontal or vertical bars. Multiple datasets are supported. In
"grouped" mode the bars are placed side-by-side for each dataset. In "stacked" mode the bars are placed
on top of each other (in the appropriate direction according to the sign of the dataset). Bars are placed on

2

Introduction

coordinates given, or in integer values from 1 upward if none are given. Error bars are plotted for each of
the datasets.

Different fill styles can be given for each dataset given. A separate key value can be given for each dataset.

e. key - abox which describes the data plotted. If akey is added to a plot, the key looks for "key" settings of
the other data plotted within a graph. If there any it builds up a box containing the symbol and line for the
plotter, and the text in the "key" setting of the widget. This allows akey to be very easily added to a plot.

The key may be placed in any of the corners of the plat, in the centre, or manually placed. Depending on
the ordering of the widgets, the key will be placed behind or on top of the widget. The key can befilled and
surrounded by a box, or not filled or surrounded.

f. label - atext label places on a graph. The alignment can be adjusted and the font changed. The position of
the label can be specified in fractional terms of the current graph, or using axis coordinates.

g. rect, elipse - these draw a rectangle or ellipse, respectively, of size and rotation given. These widgets can
be placed directly on the page or on a graph. The centre can be given in axis coordinates or fractional
coordinates.

h. imagefile - draw an external graphs file on the graph or page, with size and rotation given. The centre can
be given in axis coordinates or fractional coordinates.

i. line-draw aline with optional arrowheads on the graph or page. One end can be given in axis coordinates
or fractional coordinates.

j. contour - plot contours of a 2D dataset on the graph. Contours are automatically calculated between the
minimum and maximum val ues of the graph or chosen manually. Theline style of the contours can be chosen
individually and the region between contours can be filled with shading or color.

2D datasets currently consist of aregular grid of values between minimum and maximum positionsin x and
y. They can be constructed from three 1D datasets of x, y and z if they form aregular x, y grid.

k. image - plot a 2D dataset as a colored image. Different color schemes can be chosen. The scaling between
the values and the image can be specified aslinear, logarithmic, square-root or square.

[. polygon - plot x and y points from datasets as a polygon. The polygon can be placed directly on the page
or within a graph. Coordinates are either plotted using the axis or as fractions of the width and height of
the containing widget.

m. boxplot - plot distribution of pointsin a dataset.

n. polar - plot polar data or functions. Thisis a non-orthogonal plot and is placed directly on the page rather
than in agraph.

0. ternary - plot data of three variables which add up to 100 per cent.This is a non-orthogonal plot and is
placed directly on the page rather than in a graph.

Settings: properties and formatting

The various settings of the widgets come in a number of types, including integers (e.g. 10), floats (e.g. 3.14),
dataset names ("mydata"), expressions ("x+y"), text ("hi there!"), distances (see above), options ("horizontal" or
"vertical" for axes).

Veusz performs type checks on these parameters. If they are in the wrong format the control to edit the setting
will turn red. In the command line, a TypeError exception is thrown.

In the GUI, the current page is replotted if a setting is changed when enter is pressed or the user movesto another
Setting.

Introduction

The settings are split up into formatting settings, controlling the appearance of the plot, or properties, controlling
what is plotted and how it is plotted.

Default settings, including the default font and line style, and the default settings for any graph widget, can be
modified in the "Default styles' dialog box under the "Edit" menu. Default settings are set on a per-document
basis, but can be saved into a separate file and loaded. A default default settings file can be given to use for new
documents (set in the preferences dialog).

Datasets

Dataareimported into Veusz asadataset. A dataset isimported from afile, entered manually, set viathe command
line, or linked to other datasets viaan expression or dataset plugin. Each dataset has a.unique namein the document.
They can be seen in the dataset browser panel, or in the Data, Edit dialog box. To choose the data to be plotted,
the user usually selects the dataset in the appropriate setting of a widget.

Veusz supports one-dimensional (1D) datasets, which are a list of values with optional error bars. Error bars can
either be symmetric or asymmetric. Veusz also supports two-dimensional (2D) data. A 2D dataset is a grid of
values, with either a fixed spacing in coordinates, or with arbitrary pixel sizes. An n-dimensiona (nD) dataset is
an arbitrary matrix of values. These cannot be plotted directly, but subsets can be plotted using python slice syntax
to convert to 1D or 2D datasets.

In addition to simple numeric datasets, Veusz also supports date-time datasets. For details see the sections on
reading data. Also supported are text datasets, which are lists of text strings.

Datasets can either be plain lists of values which are stored within the document, or they can be linked to afile,
so that the values update if the file is reloaded, or they can be linked to other datasets via expressions or dataset
plugins.

Text

Veusz understands a limited set of LaTeX-like formatting for text. There are some differences (for example,
"10723" putsthe 2 and 3 into superscript), but itisfairly similar. Y ou should also leave out the dollar signs. Veusz
supports superscripts ("), subscripts ("_"), brackets for grouping attributes are "{" and "}".

Supported LaTeX symbolsinclude: \AA, \Alpha, \Beta, \Chi, \Delta, \Epsilon, \Eta, \Gamma, \l ota, \K appa, \Lamb-
da, \Mu, \Nu, \Omega, \Omicron, \Phi, \Pi, \Psi, \Rho, \Sigma, \Tau, \Theta, \Upsilon, \Xi, \Zeta, \alpha, \approx,
\ast, \asymp, \beta, \bowtie, \bullet, \cap, \chi, \circ, \cup, \dagger, \dashv, \ddagger, \deg, \delta, \diamond, \divide,
\doteq, \downarrow, \epsilon, \equiv, \eta, \gamma, \ge, \gg, \in, \infty, \int, \iota, \kappa, \lambda, \le, \leftarrow,
\Ihd, \Il, \models, \mp, \mu, \neg, \ni, \nu, \odot, \omega, \omicron, \ominus, \oplus, \oslash, \otimes, \paralldl,
\perp, \phi, \pi, \pm, \prec, \preceq, \propto, \psi, \rhd, \rho, \rightarrow, \sigma, \sim, \simeq, \sqrt, \sqsubset, \sg-
subseteq, \sqsupset, \sqsupseteq, \star, \stigma, \subset, \subseteq, \succ, \succeq, \supset, \supseteq, \tau, \theta,
\times, \umid, \unlhd, \unrhd, \uparrow, \uplus, \upsilon, \vdash, \vee, \wedge, \xi, \zeta. Please request additional
characters if they are required (and exist in the unicode character set). Special symbols can be included directly
from a character map.

Other LaTeX commands are supported. "\\" breaks aline. This can be used for simple tables. For example "{ a\b}
{c\d} " shows"ac" over "b d". The command "\frac{ a} { b} " shows a vertical fraction a/b.

Also supported are commands to change font. The command "\font{ name} { text}" changes the font text iswritten
in to name. This may be useful if a symbol is missing from the current font, e.g. "\font{ symbol}{g}" should
produce agamma. Y ou canincrease, decrease, or set the size of the font with "\size{ +2} { text}", "\size{ -2} { text} ",
or "\size{ 20} {text}". Numbers arein points.

Various font attributes can be changed: for example, "\italic{ some italic text}" (or use "\textit" or "\emph"),
"\bold{ some bold text}" (or use "\textbf") and "\underline{ some underlined text}".

Example text could include "Area/ \pi (10"{-23} cm™{-2})", or "\pi\bold{ g} ".

Veusz plots these symbolswith Qt's unicode support. Y ou can also include special charactersdirectly, by copying
and pasting from a character map application. If your current font does not contain these symbols then you may
get abox character.

Introduction

V eusz also supports the evaluation of a Python expression when text is written to the page. Python code iswritten
inside the brackets %{{ }}% . Note that the Python evaluation happens before the LaTeX expansion is done. The
return value of the expression is converted to text using the Python str() function. For example, the expression
%{{2+2}}% would write 4. Custom functions and constants are supported when evaluation, in addition to the
usual numpy functions. In addition, Veusz defines the following useful functions and values.

1. ENVIRON is the os.environ dict of environment variables. %{{ENVIRON['USER']}}% would show the
current user in unix.

2. DATE([fmt]) returns the current date, by default in ISO format. fmt is an optional format specifier using
datetime.date.strftime format specifiers.

3. TIME([fmt]) returns the current date/time, by default in 1SO format. fmt is an optional format specifier using
datetime.datetime.strftime format specifiers.

4. DATA(name], part]) returns the Veusz dataset with given name. For numeric datasets thisis a numpy array.
For numeric datasets with errors, part specifies the dataset part to return, i.e. 'data, 'serr’, 'perr’, 'nerr'. For
example, the mean value of a dataset could be shown using % {{mean(DATA('x"))}}%.

5. FILENAME() - returns the current document filename. This can include the directory/folder of the file. Note
that the filename is escaped with ESCAPE() so that LaTeX symbols are not expanded when shown.

6. BASENAME() - returns the current document filename, removing the directory or folder name Note that the
filename is escaped with ESCAPE() so that LaTeX symbols are not expanded when shown.

7. ESCAPE(X) - escapes any LaTeX symbolsin x so that they are not interpreted as LaTeX.

8. SETTING(path) - return the value of the Veusz setting given by the full path, e.g. % {{SETTING('/pagel/
width')}}%.

Measurements

Distances, widths and lengths in Veusz can be specified in a number of different ways. These include absolute
distances specified in physical units, e.g. 1cm, 0.05m, 10mm, 5in and 10pt, and relative units, which are relative
to the largest dimension of the page, including 5%, 1/20, 0.05.

Color theme

From version 1.26, widgets are colored automatically using the color theme. This theme is specified in the main
document widget settings. Widgets are given the colors in order given the order in a graph widget. The default
theme can be specified in the preferences dialog box.

To override a theme, the user can manualy specify the individual colors in the custom definitions dialog box.
Color "themel" is used as the first theme color, then "theme2", etc.

AXIS numeric scales

The way in which numbers are formatted in axis scales is chosen automatically. For standard numerical axes,
values are shown with the "%V g" formatting (see below). For date axes, an appropriate date formatting is used
so that the interval shown is correct. A format can be given for an axis in the axis number formatting panel can
be given to explicitly choose a format. Some examples are given in the drop down axis menu. Hold the mouse
over the example for detail.

C-style number formatting is used with afew Veusz specific extensions. Text can be mixed with format specifiers,
which start with a"%" sign. Examples of C-style formatting include: "%.2f" (decima number with two decimal
places, e.g. 2.01), "%.3e" (scientific formatting with three decimal places, e.g. 2.123e-02), "%g" (general for-
matting, switching between "%f" and "%e" as appropriate). See http://opengroup.org/onlinepubs/007908799/xsh/
fprintf.html for details.

http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html
http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html

Introduction

Veusz extensions include "%Ve", which is like "%e" except it displays scientific notation as written, e.g.
1.2x10723, rather than 1.2e+23. "%V g" switches between standard numbersand V eusz scientific notation for large
and small numbers. "%VE" using engineering Sl suffixes to represent large or small numbers (e.g. 1000 is 1k).

Veusz alows dates and times to be formatted using "%VDX" where "X" is one of the formatting characters for
stritime (see http://opengroup.org/onlinepubs/007908799/xsh/strftime.html for details). These include "a" for an
abbreviated weekday name, "A" for full weekday name, "b" for abbreviated month name, "B" for full month name,
"c" date and time representaiton, "d" day of month 01..31, "H" hour as00..23, "I" hour as01..12, "|" asday of year
001..366, "m" as month 01..12, "M" minute as 00..59, "p" AM/PM, "S" second 00..61, "U" week number of year
00..53 (Sunday as first day of week), "w" weekday as decimal number 0..6, "W" week number of year (Monday
as first day of week), "x" date representation, "X" time representation, "y" year without century 00..99 and "Y"
year. "%VDVS' isaspecia Veusz addon format which shows seconds and fractions of seconds (e.g. 12.2).

Installation

Please ook at the Installation notes (INSTALL) for details on installing Veusz.

The main window

Y ou should see the main window when you run Veusz (you can just type the veusz command in Unix).
File commands Data commands View commands Edit commands

/) markerspohygonvsz - eusz 00 ®
File, Edit W¥iew Insert Data Help

ad_ BDBEADEIE20 @0 %ike-
widgels T H | — ikl le Pl =B % B0 @ @R Al

Editing - veusz ®

n Plot window
Name Tyoe A - : ‘ :
Select S L oraph araph L] LES 1 NPy %
. —x axis . ©
widget ~— = axis LR ﬁﬁ 53 B ’#
O polwgon2 polygon 1 * 7m0
@ palgonl palygon _ 0 Hy Yo °
%% none »y < i Lk e,y
< X
Properties - Veusz ® & > M
Widget s A e /\N N
- H positi . M A
properties ~—=X"ostons stan : v

¥ positions stary

Position mode | axes

X axis %

® < < < < ®
Outward ticks on this y axis

D <> @

Formatting - Veusz

>
1 / (D .
- (o]
(A A Ay

lj.
o
2% g ©
P @
/ ® % |
e
Widget *
9t FH e
o

h ®x K
formatting Main " a®% 4y 0
Hice * ¢Aﬂ.x-.ﬁ * v
S .] ‘u\

-z -1 0 1 2z
Outward ticks on this x axis

No position

The Veusz window is split into several sections. At the top is the menu bar and tool bar. These work in the usual
way to other applications. Sometimes options are disabled (greyed out) if they do not make sense to be used. If
you hold your mouse over a button for afew seconds, you will usually get an explanation for what it does called
a"tool tip".

Below the main toolbar is a second toolbar for constructing the graph by adding widgets (on the Ieft), and some
editing buttons. The add widget buttons add the request widget to the currently selected widget in the selection
window. The widgets are arranged in atree-like structure.

Below these toolbars and to the right is the plot window. Thisis where the current page of the current document
is shown. Y ou can adjust the size of the plot on the screen (the zoom factor) using the "View" menu or the zoom
tool bar button (the magnifying glass). Initially you will not see a plot in the plot window, but you will see the
Veusz logo. At the moment you cannot do much else with the window. In the future you will be able to click on
itemsin the plot to modify them.

To theleft of the plot window is the selection window, and the properties and formatting windows. The properties
window lets you edit various aspects of the selected widget (such as the minimum and maximum values on an
axis). Changing these values should update the plot. The formatting lets you modify the appearance of the selected
widget. There are a series of tabs for choosing what aspect to modify.

http://opengroup.org/onlinepubs/007908799/xsh/strftime.html

Introduction

The various windows can be "dragged" from the main window to "float" by themselves on the screen.

To the bottom of the window is the console. This window is not shown by default, but can be enabled in the
View menu. The console is a Veusz and Python command line console. To read about the commands available
see Commands. AsthisisaPython console, you can enter mathematical expressions (e.g. "1+2.0* cos(pi/4)") here
and they will be evaluated when you press Enter. The usual specia functions and the operators are supported. Y ou
can aso assign results to variables (e.g. "a=1+2") for use later. The console aso supports command history like
many Unix shells. Press the up and down cursor keys to browse through the history. Command line completion
isnot available yet!

There also exists a dataset browsing window, by default to the right of the screen. This window allows you to
view the datasets currently loaded, their dimensions and type. Hovering a mouse over the size of the dataset will
give you a preview of the data.

My first plot

After opening Veusz, on the left of the main window, you will see a Document, containing a Page, which contains
a Graph with its axes. The Graph is selected in the selection window. The toolbar above adds a new widget to
the selected widget. If awidget cannot be added to a selected widget it is disabled. On opening a new document
Veusz automatically adds a new Page and Graph (with axes) to the document.

Y ou will see something like this:

v/ () Untitled - Veusz @@
File Edit View |nsen Data Help

EeBas IHEHL® @O %A
DEL - EBEnEhreER|IEDy % &0 @ @ B Al

Editing - Weusz ®

MName Type
oo document
--[paget page
-1 araphi araph 0.3
—x axis
—y axis

Properties - Veusz ® ®

Formatting - Weusz ® %
v E
Main
Hitle

Lemt margin 17em v] |

. L .
Right margin 0.dem ~ 0z 04 0.6 0.8 1

<>

Mo position

Select the x axis which has been added to the document (click on "x" in the selection window). In the properties
window you will see avariety of different properties you can modify. For instance you can enter alabel for the
axis by writing "Area (cm™{2})" in the box next to label and pressing enter. VVeusz supports text in LaTeX-like
form (without the dollar signs). Other important parameters is the "log" switch which switches between linear
and logarithmic axes, and "min" and "max" which allow the user to specify the minimum and maximum values
on the axes.

Theformatting dialog lets you edit various aspects of the graph appearance. For instancethe "Line" tab allowsyou
to edit the line of the axis. Click on "Line", then you can then modify its colour. Enter "green" instead of "black"
and press enter. Try making the axis label bold.

Now you can try plotting a function on the graph. If the graph, or its children are selected, you will then be able
to click the "function" button at the top (ared curve on a graph). Y ou will see a straight line (y=x) added to the
plot. If you select "functionl”, you will be able to edit the functional form plotted and the style of itsline. Change
the function to "x**2" (x-squared).

Wewill now try plotting data on the graph. Go to your favourite text editor and save the following data as test.dat:

Introduction

1 0.1 -0.12 1.1
2.05 0.12 -0.14 4.08 0.12
2.98 0.08 -0.1 2.9

1

4.02 0.04 -0.1 5.3 1.0

Thefirst three columns are the x datato plot plusits asymmetric errors. The final two columns are the y data plus
its symmetric errors. In Veusz, go to the "Data" menu and select "Import". Type the filename into the filename
box, or use the "Browse..." button to search for the file. You will see a preview of the data pop up in the box
below. Enter "X,+,- y,+-" into the descriptors edit box (note that commas and spaces in the descriptor are almost
interchangeable in Veusz 1.6 or newer). This describes the format of the data which describes dataset "x" plus
its asymmetric errors, and "y" with its symmetric errors. If you now click "Import", you will see it has imported
datasets "x" and "y".

To plot the datayou should now click on"graphl1" in the tree window. Y ou are now ableto click on the"xy" button
(which looks like points plotted on agraph). Y ou will see your data plotted on the graph. VVeusz plots datasets "x"

and"y" by default, but you can change these in the properties of the "xy" plotter.

Y ou are able to choose from avariety of markersto plot. Y ou can remove the plot line by choosing the"Plot Line"
subsetting, and clicking on the "hide" option. Y ou can change the colour of the marker by going to the "Marker
Fill" subsetting, and entering anew colour (e.g. red), into the colour property.

Chapter 2. Reading data

Currently Veusz supports reading data from fileswith text, CSV, HDF5, FITS, 2D text or CSV, QDP, binary and
NPY/NPZ formats. Use the Data _ Import dialog to read data, or the importing commands in the APl can be
used. In addition, the user can load or write import plugins in Python which load data into Veusz in an arbitrary
format. At the moment QDP, binary and NPY/NPZ files are supported with this method. The HDF5 file format
is the most sophisticated, and is recommended for complex datasets.

By default, data are "linked" to the file imported from. This means that the data are not stored in the Veusz saved
file and are reloaded from the original data file when opening. In addition, the user can use the Data _, Reload
menu option to rel oad data from linked files. Unselect the linked option when importing to remove the association
with the data file and to store the datain the Veusz saved document.

Note that a prefix and suffix can be given when importing. These are added to the front or back of each dataset
name imported. They are convenient for grouping data together.

v/ () Import data - Veusz D ® ®
Filenarne Jiss/codeiveusziexamplesiexample_import_1.dat v | Browse..

Standard C8¥ FITS | 2D

File preview:

Example data file 1 for impaorting —
#this is read in with blocks enabled

1 0.1 004

15 1.2 021

2 21 0M

24 20 0N

63 35 021

B9 40 0.34

81 81 01

00.598891867123 0871271171527
11.2T6525909928 0293211984286
21.80910012902 059316037268

3 2 49652366924 0212350438791

<>

Dataset names xyz W Help

| lgnore text lines Read data in blocks

General options
| Link datasets to file Prefix v

Character encoding utf_8 w | Suffix w

Import LClose

We list the various types of import below.

Standard text import

The default text import operates on simple text files. The data are assumed to be in columns separated by white-
space. Each column corresponds to dataset (or its error bars). Each row is an entry in the dataset.

Theway thedataareread isgoverened by asimple"descriptor". Thiscan simply bealist of dataset names separated
by spaces. If no descriptor is given, the columns are treated as separate datasets and are given names col 1, col2,
etc. Veusz attempts to automatically determine the type of the data.

When reading in data, Veusz treats any whitespace as separating columns. The columns do not actually need to
be aligned. Furthermore a"\" symbol can be placed at the end of aline to mark a continuation. Veusz will read
the next line as if it were placed at the end of the current line. In addition comments and blank lines are ignored
(unless in block mode). Comments start with a "#", *;", "!" or "%", and continue until the end of the line. The
special value "nan" can be used to specify abreak in a dataset.

If the option to read data in blocks is enabled, Veusz treats blank lines (or lines starting with the word "no") as
block separators. For each dataset in the descriptor, separate datasets are created for each block, using a numeric
suffix giving the block number, eg. _1, 2.

Reading data

Data types in text import

Veusz supports reading in several types of data. The type of data can be added in round brackets after the name
in the descriptor. Veusz will try to guess the type of data based on the first value, so you should specify it if there
isany form of ambiguity (e.g. is 3 text or a number). Supported types are numbers (use numeric in brackets) and
text (use text in brackets). An example descriptor would be "x(numeric) +- y(numeric) + - label(text)" for an x
dataset followed by its symmetric errors, ay dataset followed by two columns of asymmetric errors, and a final
column of text for the label dataset.

A text column does not need quotation unless it contains space characters or escape characters. However make
sure you deselect the "ignore text" option in theimport dialog. Thisignoreslines of text to ease the import of data
from other applications. Quotation marks are recommended around text if you wish to avoid ambiguity. Text is
quoted according to the Python rules for text. Double or single quotation marks can be used, e.g. "A 'test™, 'A
second "test"'. Quotes can be escaped by prefixing them with a backdlash, e.g. "A new \"test\"". If the data are
generated from a Python script, the repr function provides the text in a suitable form.

Dates and times are also supported with the syntax "dataset(date)". Dates must be in 1SO format YYYY-MM-
DD. Times are in 24 hour format hh;mm:ss.ss. Dates with times are written YYYY-MM-DDThh:mm:ss.ss (this
isastandard I SO format, see http://www.w3.0rg/ TR/NOTE-datetime). Dates are stored within Veusz as anumber
which is the number of seconds since the start of January 1st 2009. Veusz also supports dates and times in the
local format, though take note that the same file and data may not work on a system in a different location.

Descriptors

A list of datasets, or a "Descriptor”, is given in the Import dialog to describe how the data are formatted in the
import file. The descriptor at its simplest isaspace or comma-separated list of the names of the datasets to import.
These are columnsin thefile.

Following adataset namethetext "+","-", or "+-" can be given to say that the following column is a positive error
bar, negative error bar or symmetric error bar for the previous (non error bar) dataset. These symbols should be
separated from the dataset name or previous symbol with a space or acomma symbol.

In addition, if multiple numbered columns should beimported, the dataset name can be followed by square brackets
containing arange in the form "[a:b]" to number columns ato b, or [:] to number remaining columns. See below
for examples of thisuse.

Dataset names can contain virtually any character, even unicode characters. If the name contains non alpha-nu-
meric characters (characters outside of A-Z, a-z and 0-9), then the dataset name should be contained within back-
tick characters. An example descriptor is “length data (m)’,+- “speed (mps)’,+,-, for two datasets with spaces
and brackets in their names.

Instead of specifying the descriptor in the Import dialog, the descriptor can be placed in the data file using a
descriptor statement on a separate line, consisting of "descriptor” followed by the descriptor. Multiple descriptors
can be placed in asinglefile, for example:

here is one section
descriptor x,+- y,+, -
105 20.1-0.1
20.3 40.2-0.1

my next bl ock

descri ptor al pha beta gamma
123

456

789

etc...

10

http://www.w3.org/TR/NOTE-datetime

Reading data

Descriptor examples
1. xy two columns are present in the file, they will be read in as datasets "x" and "y".

2. X,+- y,+,- or X +- y + - two datasets are in the file. Dataset "x" consists of the first two columns. The first
column are the values and the second are the symmetric errors. "y" consists of three columns (note the comma
between + and -). Thefirst column are the values, the second positive asymmetric errors, and the third negative

asymmetric errors.
Suppose the input file contains:
0.1 -
2e-2 -
1

3 EO

N
PO o
P WwN

2

oNeoNe]

.3
.2
.0

GENEN)
oo

e-
9 0.
Then x will contain "1+-0.3", "1.5+-0.2", "2.19+-0.02". y will contain "2 +0.1 -0.2", "2.3 +0.02 -0.3", "5 +0.1
-0.1".

3. X[1:2] y[:] thefirst columnisthedata"x_1", thesecond "x_2". Subsegquent columnsareread as"y[1]" to"y[n]".
4. y[:]+- read each pair of columns as a dataset and its symmetric error, calling them "y[1]" to "y[n]".

5. foo,,+- read thefirst column as the foo dataset, skip acolumn, and read the third column asits symmetric error.

CSV files

CVS (comma separated variable) files are often written from other programs, such as spreadsheets, including
Excel and Gnumeric. Veusz supports reading from these files.

In the import dialog choose "CSV", then choose a filename to import from. In the CSV file the user should place
the data in either rows or columns. Veusz will use a name above a column or to the left of arow to specify what
the dataset name should be. The user can use new names further down in columns or right in rows to specify a
different dataset name. Names do not have to be used, and Veusz will assign default "col" and "row" namesif not
given. You can also specify aprefix which is prepended to each dataset name read from thefile.

To specify symmetric errors for a column, put "+-" as the dataset name in the next column or row. Asymmetric
errors can be stated with "+" and "-" in the columns.

Thedatatypein CSV filesare automatically detected unless specified. The datatype can be given in brackets after
the column name, e.g. "name (text)", where the data type is "date", "numeric" or "text". Explicit data types are
needed if the data look like a different data type (e.g. atext item of “1.23"). The date format in CSV files can be
specified in the import dialog box - see the examples given. In addition CSV files support numbers in European
format (e.g. 2,34 rather than 2.34), depending on the setting in the dialog box.

HDFS5 files

HDF5 isaflexible data format. Datasets and tables can be stored in a hierarchical arrangements of groups within
afile. Veusz supports reading 1D numeric, text, date-time, 2D numeric or n-dimensional numeric datafrom HDF
files. The h5py Python module must be installed to use HDF5 files (included in binary releases).

In theimport dialog box, choose which individual datasetsto import, or selecting agroup to import all the datasets
within the group. If selecting a group, datasets in the group incompatible with Veusz are ignored.

A name can be provided for each dataset imported by entering one under "Import as'. If one is not given, the
dataset or column name is used. The name can also be specified by setting the HDF5 dataset attributevsz _namne
to the name. Note that for compound datasets (tables), vsz_ attributes for columns are given by appending the
suffix _col umnarre to the attribute.

11

Reading data

Error bars

Error barsare supported intwo ways. Thefirst way isto combine 1D datasets. For the datasetswhich are error bars,
use a name which is the same as the main dataset but with the suffix "(+-)", "(+)" or "(-)", for symmetric, postive
or negative error bars, respectively. The second method is to use a 2D dataset with two or three columns, for
symmetric or asymmetric error bars, respectively. Click on the dataset in the dial og and choose the option to import
as a 1D dataset. This second method can also be enabled by adding an HDF5 attribute vsz_t wod_as_oned
set to anon-zero value for the dataset.

Slices

You may wish to reduce the dimensions of a dataset before importing by dicing. You can also give a slice to
import a subset of a dataset. When importing, in the slice column you can give a slice expression. This should
have the same number of entries as the dataset has dimensions, separated by commas. An entry can be asingle
number, to select a particular row or column. Alternatively it could be an expression like a: b: ¢ or a: b, where
a isthe starting index, b is one beyond the stopping index and optionally ¢ is the step size. A dice can also be
specified by providing an HDF5 attributevsz sl i ce for the dataset.

2D data ranges

2D datahavean associated X and Y range. By default the number of pixels of theimage are used to givethisrange.
A range can be specified by clicking on the dataset and entering a minimum and maximum X and Y coordinates.
Alternatively, provide the HDF5 attribute for the dataset vsz_r ange, which should be set to an array of four
values (minimum X, minimum y, maximum X, maximum y).

Dates

Date/time datasets can be made from a 1D numeric dataset or from a text dataset. For the 1D dataset, use the
number of secondsrelativeto the start of the year 2009 (thisisVeusz format) or theyear 1970 (thisis Unix format).
In the import dialog, click on the name of the dataset and choose the date option. To specify a date format in the
HDF5 file, set the attributevsz_convert _dat et i ne to either veusz or uni x.

For text datasets, dates must be given in theright format, selected in the import dialog after clicking on the dataset
name. Asin other file formats, by default Veusz uses 1SO 8601 format, which looks like "2013-12-22T21:08:07",
where the date and time parts are optional. The T is also optional. Y ou can also provide your own format when
importing by giving a date expression using YYYY, MM, DD, hh, mm and ss (e.g. "YYYY-MM-DD|T|hh:m-
m:ss'), where vertical bars mark optional parts of the expression. To automate this, set the attribute vsz_con-

vert _dat eti ne totheformat expression or i so to specify 1SO format.

2D text or CSV format

Veusz can import 2D data from standard text or CSV files. In this case the data should consist of a matrix of data
values, with the columns separated by one or more spaces or tabs and the rows on different lines.

In addition to the data the file can contain lines at the top which affect the import. Such specifiers are used, for
exampl e, to change the coordinates of the pixelsinthefile. By default thefirst pixels coordinatesis between 0 and
1, with the centre at 0.5. Subsequent pixels are 1 greater. Note that the lowest coordinate pixel is the bottom-left
value in the table of imported values. When using specifiersin CSV files, put the different parts (separated by
spaces) in separate columns. Below are listed the specifiers:

1. xrange A B - make the 2D dataset span the coordinate range A to B in the x-axis (where A and B are numbers).
Note that the rangeisinclusive, so a1 pixel wide image with A=0 and B=1 would have the pixel centre at 0.5.
The pixelsare assumed to have the same spacing. Do not use this asthe same time asthe xedge or xcent options.

2. yrange A B - make the 2D dataset span the coordinate range A to B in the y-axis (where A and B are numbers).

3. xedge A B C... - rather than assume the pixels have the same spacing, give the coordinates of the edges of
the pixels in the x-axis. The numbers should be space-separated and there should be one more number than

12

Reading data

pixels. Do not give xrange or xcent if thisis given. If the values are increasing, the lowest coordinate value
is at the left of the dataset, otherwise if they are decreasing, it is on the right (unless the rows/columns are
inverted or transposed).

4. yedge A B C... - rather than assume the pixels have the same spacing, give the coordinates of the edges of
the pixelsin the y-axis. If the values are increasing, the lowest coordinate value is at the bottom row. If they
instead decrease, it is at the top.

5. xcent A B C... - rather than give atotal range or pixel edges, give the centres of the pixels. There should be
the same number of values as pixels in the image. Do not give xrange or xedge if thisis given. The order of
the values specify whether the pixels are left to right or right to left.

6. ycent A B C... - rather than give atotal range or pixel edges, give the centres of the pixels. The value order
specifies whether the pixels are bottom to top, or top to bottom.

7. invertrows - invert the rows after reading the data.
8. invertcols - invert the columns after reading the data.
9. transpose - swap rows and columns after importing data.

10.gridatedge - the first row and leftmost column give the positions of the centres of the pixels. Thisis aso an
option in the import dialog. The values should be increasing or decreasing.

FITS files

1D, 2D or n-dimensiona data can be read from FITS files. 1D data, with optional errors bars, can be read from
table extensions, and 2D data from image or primary extensions. Note that pyfits or astropy must be installed to
get FITS support.

Toread 1D data, choose atabular HDU for to import from, enter the name to give the imported data, and choose
the columns to assign to the data. Multiple sets of data can be read by repeatedly importing.

For 2D or n-dimensioanl data, choose an image HDU. Enter the name of the dataset. For 2D data, the data are
imported with pixel coordinatesby default (i.e. the pixelsare numbered with integers). Other modes can be selected
under Image WCS mode. These include fractional, where the pixels are numbered between 0 and 1. Pixel (WCS)
assigns the pixel coordinate calculated relative to the CRPI X1/ 2 header keywords. Linear (WCS) uses linear
coordinates where the Pixel (WCS) coordinates are multiplied by the respective CDELT1/ 2 values and added to
the CRVAL1/ 2 values.

Reading other data formats

As mentioned above, a user may write some Python code to read a datafile or set of datafiles. To write aplugin
which isincorportated into Veusz, see http://barmag.net/veusz-wiki/lmportPlugins

You can also include Python code in an input file to read data, which we describe here. Suppose an input file
"in.dat" contains the following data:

A WNPE
R O A~DN

6

Of coursethisdatacould be read using the I mportFile command. However, you could also read it with thefollowing
Veusz script (which could be saved to afile and loaded with execfile or Load. The script also places symmetric
errors of 0.1 on the x dataset.

13

http://barmag.net/veusz-wiki/ImportPlugins

Reading data

x
1

[]

[]

l[ine in open("in.dat"):

parts = [float(i) for i in line.split()]
X. append(parts[0])

y. append(parts[1])

<
=

(o]

SetData(' x', x, symerr=0.1)
SetData('y', V)

Manipulating datasets

Imported datasets can easily be modified in the Data Editor dialog box. This dialog box can also be used to create
new datasets from scratch by typing them in. The Data Create dialog box is used to new datasets as a numerical
sequence, parametrically or based on other datasets given expressions. If you want to plot afunction of a dataset,
you often do not have to create a new dataset. Veusz allows to enter expressions directly in many places.

Using dataset plugins

Dataset plugins can be used to perform arbitrary manipulation of datasets. Veusz includes several plugins for
mathematical operation of data and other dataset manipulations, such as concatenation or splitting. If you wish to
write your own plugins look at http://barmag.net/veusz-wiki/DatasetPlugins.

Using expressions to create new datasets

For instance, if the user has already imported dataset d, then they can create d2 which consists of d** 2. Expressions
are in Python numpy syntax and can include the usual mathematical functions.
v/ () Create dataset - Veusz @ E ®
Mame | newdataset v
Method of creating dataset
walue or range
Mumber of steps 100 v
Parametric (as an expression oft)
t= |0 v o 1 v in (100 v steps (inclusive)

s Expression using existing datasets

Datasetvalues or expressions

Enter expressions as a function of other datasets. Append suflies _data, _serr,
_nerrand _perrto access different parts of datasets. If a dataset name contains
punctuation or spaces, surround the narne with backdicks ()

Yalue (olddataset- 10)*5 ~
Bymmetric error | olddataset_data T 0.1

Positive error |

Megative errar

+ Linkthis datasetto these expressions

Create Close

Expressions for error bars can also be given. By appending _data, serr, perr or _nerr to the name of the
dataset in the expression, the user can base their expression on particular parts of the given dataset (the main data,
symmetric errors, positive errors or negative errors). Otherwise the program uses the same parts as is currently
being specified.

If a dataset name contains non al phanumeric characters, its name should be quoted in the expression in back-tick
characters, e.g. “length (cm)™2.

The numpy functionality is particularly useful for doing more complicated expressions. For instance, aconditional
expression can be written as wher e(x<y,x,y) or wher e(isfinite(x),a,b)).

14

http://barmag.net/veusz-wiki/DatasetPlugins

Reading data

Y ou often do not need to create anew dataset when. For example, with the xy point plotter widget, you can directly
enter an expression asthe X and Y dataset settings. When you give adirect dataset expression, you can define error
bar expressions by separating them by commas, and optionally surrounding them by brackets. For example (a,0.1)
plots dataset a as the data, with symmetric errors bars of 0.1. Asymmetric bars are given as (a,a*0.1,-a*0.1).

Other useful functions in evaluation include those already mentioned in the LaTeX expansion description. DA-
TA(nhame, [part]) returns the dataset with name given. The optional part, which can be 'data, 'serr’, 'perr’ or 'nerr’,
allowserror barsto be returned for numerical data. SETTING(path) returnsthe value of the Veusz setting, which
can include, for example, the best fitting parameters of afit. ENVIRON is the Python environment variable dic-
tionary, allowing values to be passed from the environment, e.g. float(ENVIRON['myvar']).

Linking datasets to expressions

A particularly useful featureisto be ableto link a dataset to an expression, so if the expression changes the dataset
changes with it, like in a spreadsheet.

Splitting data

Data can also be chopped in this method, for example using the expression x[10: 20], which makes a dataset based
on the 11th to 20th item in the x dataset (the ranges are Python syntax, and are zero-based). Negative indices
count backwards from the end of the dataset. Data can be skipped using expressions such as data[::2], which
skips every other element

Defining new constants or functions

User defined constants or functions can be defined in the "Custom definitions" dialog box under the edit menu.
Functions can also be imported from external python modules.
v/ (2) Custom definitions RIcIo)] ()

Drefinitions

Alist of custom functions, constants or symbaols impaorted from external
Python modules. These can be used when plotting functions, creating new
datasets and fitting data.

Definitions are saved with the document and evaluated from the top down, in

order. Afile with default custom settings can be specified in the preferences
dialog

Tyne Name Crefinition
constant rrypi 314158
function greati) cospermypl

Move up Move down Add Remave

Save... Load... Recent v € Close

Custom definitions are defined on a per-document basis, but can be saved or loaded into afile. A default custom
definitions file can be set in the preferences dialog box.

Dataset plugins
In addition to creating datasets based on expressions, a variety of dataset plugins exist, which make certain oper-

ations on datasets much more convenient. See the Data, Operations menu for alist of the default plugins. The user
can easily create new plugins. See http://barmag.net/veusz-wiki/DatasetPlugins for details.

Capturing data

In addition to the standard data import, data can be captured as it is created from an external program, a network
socket or afile or named pipe. When capturing from afile, the behaviour is like the Unix tail -f command, where

15

http://barmag.net/veusz-wiki/DatasetPlugins

Reading data

new lines written to the file are captured. To use the capturing facility, the data must be written in the smple line
based standard V eusz text format. Data are whitespace separated, with one value per dataset given on asingleline.

To capture data, use the dialog box Data _ Capture. A list of datasets should be given. This is the standard
descriptor format. Choose the source of the data, which is either a a filename or named pipe, a network socket
to connect to, or a command line for an external program. Capturing ends if the source of the data runs out (for
external programs or network sockets) or the finish button is clicked. It can optionally end after a certain number
of data lines or when a time period has expired. Normally the data are updated in Veusz when the capturing is
finished. There is an option to update the document at intervals, which is useful for monitoring. A plot using the
variables will update when the data are updated.

Click the Capt ur e button to start the capture. Click Fi ni sh or Cancel to stop. Cancelling destroys captured
data

16

Chapter 3. Command line interface

Introduction

An dternative way to control Veusz is viaits command line interface. As Veusz is aa Python application it uses
Python as its scripting language. Therefore you can freely mix Veusz and Python commands on the command
line. Veusz can also read in Python scripts from files (see the Load command).

When commands are entered in the command prompt in the Veusz window, V eusz supports asimplified command
syntax, where brackets following commands names, and commas, can replaced by spaces in Veusz commands
(not Python commands). For example, Add('graph’, name='foo'), may be entered as Add 'graph’' name='foo'.

The numpy package is aready imported into the command line interface (as"*"), so you do not need to import
it first.

The command prompt supports history (use the up and down cursor keys to recall previous commands).

Most of the commands listed below can be used in the in-program command line interface, using the embedding
interface or using veusz_listen. Commands specific to particular modes are documented as such.

Veusz also includes a new object-oriented version of the interface, which is documented at http://bar-
mag.net/veusz-wiki/EmbeddingPython.

Commands

Welist the allowed set of commands below

Action
Action('actionname', componentpath=".")

Initiates the specified action on the widget (component) given the action name. Actions perform certain automated
routines. These include "fit" on afit widget, and “zeroMargins' on grids.

Add

Add(‘widgettype', name="nameforwidget', autoadd=True, optionalargs)
The Add command adds a graph into the current widget (See the To command to change the current position).

The first argument is the type of widget to add. These include "graph”, "page”, "axis’, "xy" and "grid". nameis
the name of the new widget (if not given, it will be generated from the type of the widget plus a number). The
autoadd parameter if set, constructs the default sub-widgets this widget has (for example, axesin a graph).

Optionally, default valuesfor the graph settingsmay be given, for example Add('axis’, name="y", dir ection="ver -
tical').

Subsettings may be set by using double underscores, for example Add('xy', MarkerFill__color='red', Error-
BarLine__hide=True).

Returns. Name of widget added.

AddCustom

AddCustom(type, name, value)

17

http://barmag.net/veusz-wiki/EmbeddingPython
http://barmag.net/veusz-wiki/EmbeddingPython

Command line interface

Add a custom definition for evaluation of expressions. This can define a constant (can be in terms of other con-
stants), afunction of 1 or more variables, or afunction imported from an external python module.

ctypeis"constant”, "function" or "import".
name is name of constant, or "function(x, y, ...)" or module name.

val isdefinition for constant or function (both are_strings), or isalist of symbolsfor amodule (comma separated
itemsin astring).

If mode is 'appendalways, the custom value is appended to the end of the list even if there is one with the same
name. If modeis'replace, it replaces any existing definition in the same place in thelist or is appended otherwise.
If modeis 'append’, then an existing definition is deleted, and the new one appended to the end.

AddIimportPath

AddlmportPath(directory)

Add adirectory to thelist of directoriesto try to import data from.

CloneWidget

CloneWidget(widget, newpar ent, newname=None)

Clone the widget given, placing the copy in newparent and the name given. newname is an optional new name
to give it Returns new widget path.

Close

Close()
Closes the plotwindow. Thisis only supported in embedded mode.

CreateHistogram

CreateHistogram(inexpr, outbinsds, outvalsds, binparams=None, binmanual=None, method="'counts’, cu-
mulative = 'non€', errors=False)

Histogram an input expression. inexpr isinput expression. outhinds is the name of the dataset to create giving bin
positions. outvalsdsis name of dataset for bin values. binparamsis None or (hnumbins, minval, maxval, isloghins).
binmanual is None or alist of bin values. method is 'counts, 'density’, or ‘fractions. cumulative is to calculate
cumulative distributions which is 'none, 'smalltolarge’ or ‘largetosmall’. errorsisto calcul ate Poisson error bars.

DatasetPlugin

DatasetPlugin(pluginname, fields, datasethames={})>

Use a dataset plugin. pluginname: name of plugin to use fields: dict of input values to plugin datasetnames: dict
mapping old names to new names of datasetsif they are renamed. The new name None means dataset is deleted

EnableToolbar

EnableT oolbar (enable=True)

Enable/disable the zooming toolbar in the plotwindow. This command is only supported in embedded mode or
from veusz_listen.

Export

18

Command line interface

Export(filename, color=True, page=0 dpi=100, antialias=True, quality=85, backcolor="#ffffff00", pdfd-
pi=150, svgtextastext=False)

Export the page given to the filename given. The filename must end with the correct extension to get theright sort
of output file. Currrenly supported extensions are '.eps, ".pdf', '.ps, ".svg', ".jpd’, jpeg’, "bmp' and ".png'. If color
is True, then the output is in colour, else greyscale. page is the page number of the document to export (starting
from O for the first page!). A list of pages can be given for multipage formats (.pdf or .ps). dpi is the number of
dots per inch for bitmap output files. antialias - antialiases output if True. quality is a quality parameter for jpeg
output. backcolor isthe background color for bitmap files, which isaname or a#RRGGBBAA value (red, green,

blue, alpha). pdfdpi isthe dpi to use when exporting EPS or PDF files. svgtextastext sayswhether to export SVG
text astext, rather than curves.

FilterDatasets

Filter Datasets(filterexpr, datasets, prefix="", suffix="", invert=False, replaceblanks=False)
Filter alist of datasets given. Creates new datasets for each with prefix and suffix added to input dataset names.
filterexpr is an input numpy eexpression for filtering the datasets. If invert is set, the filter condition is inverted.

If replaceblanks is set, filtered values are not removed, but replaced with a blank or NaN value. This command
only works on 1D numeric, date or text datasets.

ForceUpdate

ForceUpdate()

Forcethewindow to be updated to reflect the current state of the document. Often used when periodic updates have
been disabled (see SetUpdatel nterval). This command is only supported in embedded mode or from veusz_listen.

Get
Get('settingpath')
Returns: The value of the setting given by the path.

>>> Cet (' /pagel/ graphl/x/mn")
"Aut o'

GetChildren

GetChildren(where=".")

Returns: The names of the widgets which are children of the path given

GetClick

GetClick()

Waits for the user to click on a graph and returns the position of the click on appropriate axes. Command only
worksin embedded mode.

Returns: A list containing tuples of the form (axispath, val) for each axis for which the click was in range. The
value isthe value on the axis for the click.

GetColormap

GetColormap(name, invert=False, nvals=256)

19

Command line interface

Returns a colormap as a numpy array of red, green, blue, alpha values (ranging from 0 to 255) with the number
of steps given.

GetData

GetData(name)

Returns: For a 1D dataset, a tuple containing the dataset with the name given. The valueis (data, symerr, negerr,
poserr), with each a numpy array of the same size or None. data are the values of the dataset, symerr are the
symmetric errors (if set), negerr and poserr and negative and positive asymmetric errors (if set). If atext dataset,
return a list of text elements. If the dataset is a date-time dataset, return alist of Python datetime objects. If the
dataset is a 2D dataset return the tuple (data, rangex, rangey), where datais a 2D numpy array and rangex/y are
tuples giving the range of the x and y coordinates of the data. If it isan ND dataset, return an n-dimensional array.

data = GetData('x")
SetData(' x', data[0]*0.1, *data[1l:])

GetDataType

GetDataType(name)

Get type of dataset with name given. Returns '1d' for a 1d dataset, '2d' for a 2d dataset, 'text' for atext dataset and
‘datetime’ for a datetime dataset.

GetDatasets

GetDatasets()

Returns: The names of the datasets in the current document.

GPL

GPL()

Print out the GNU Public Licence, which Veusz is licenced under.

ImportFile
ImportFile(‘filename', 'descriptor’, linked=False, prefix="", suffix="", encoding="utf_8', renames={})
Imports data from afile. The arguments are the filename to load data from and the descriptor.

The format of the descriptor isalist of variable names representing the columns of the data. For more information
see Descriptors.

If the linked parameter is set to True, if the document is saved, the data imported will not be saved with the
document, but will be reread from the filename given the next time the document is opened. The linked parameter
isoptional.

If prefix and/or suffix are set, then the prefix and suffix are added to each dataset name. If set, renames maps
imported dataset names to final dataset names after import.

Returns: A tuple containing alist of theimported datasets and the number of conversionswhich failed for adataset.

Changed in version 0.5: A tupleis returned rather than just the number of imported variables.

ImportFile2D

20

Command line interface

ImportFile2D('filename', datasets, xrange=None, yrange=None, invertrows=False, invertcols=False, trans-
pose=False, prefix="", suffix="", linked=False, encoding="utf8', renames={})

Imports two-dimensional data from a file. The required arguments are the filename to load data from and the
dataset name, or alist of namesto use.

filename is a string which contains the filename to use. datasets is either a string (for a single dataset), or a list
of strings (for multiple datasets).

The xrange parameter is a tuple which contains the range of the X-axis along the two-dimensional dataset, for
example (-1., 1.) represents an inclusive range of -1 to 1. The yrange parameter specifies the range of the Y-axis
similarly. If they are not specified, (0, N) isthe default, where N isthe number of datapoints along aparticular axis.

invertrows and invertcols if set to True, invert the rows and columns respectively after they are read by Veusz.
transpose swaps the rows and columns.

If prefix and/or suffix are set, they are prepended or appended to imported dataset names. If set, renames maps
imported dataset names to final dataset names after import.

If the linked parameter is True, then the datasets are linked to the imported file, and are not saved within a saved
document.

The file format this command accepts is a two-dimensional matrix of numbers, with the columns separated by
spaces or tabs, and the rows separated by new lines. The X-coordinateistaken to bein thedirection of the columns.
Comments are supported (use "#', "!" or "%"), as are continuation characters ("\"). Separate datasets are delimi-
nated by using blank lines.

In addition to the matrix of numbers, the various optional parameters this command takes can also be specified in
the data file. These commands should be given on separate lines before the matrix of numbers. They are:

1. xrange A B
2. yrangeCD
3. invertrows
4. invertcols

5. transpose

ImportFileCSV

ImportFileCSV ('filename', readrows=False, dsprefix="", dssuffix=", linked=False, encoding="utf_8', re-
names={})

This command imports data from a CSV format file. Data are read from the file using the dataset names given at
the top of thefilesin columns. Please see the reading data section of this manual for more information. dsprefix is
prepended to each dataset name and dssuffix isadded (the prefix option isdeprecated and al so addeds an underscore
to the dataset name). linked specifies whether the data will be linked to the file. renames, if set, provides new
names for datasets after import.

ImportFileHDF5

ImportFileHDF5(filename, items, namemap={}, dices={}, twodranges={}, twod_as oned=set([]), con-
vert_datetime={}, prefix="", suffix="", renames={}, linked=False)

Import datafrom aHDF5 file. itemsisalist of groups and datasets which can be imported. If agroup isimported,
all child datasets are imported. namemap maps an input dataset to a veusz dataset name. Special suffixes can be
used on the veusz dataset name to indicate that the dataset should be imported specialy.

21

Command line interface

"foo (+)': inport as +ve error for dataset foo
"foo (-)': inport as -ve error for dataset foo
"foo (+-)': inmport as symmetric error for dataset foo

dlicesis an optional dict specifying slices to be selected when importing. For each dataset to be sliced, provide a
tuple of values, one for each dimension. The values should be a single integer to select that index, or atuple (start,
stop, step), where the entries are integers or None.

twodranges is an optional dict giving data ranges for 2d datasets. It maps names to (minx, miny, maxx, maxy).
twod_as_oned: optional set containing 2d datasets to attempt to read as 1d

convert_datetime should be a dict mapping hdf name to specify date/time importing. For a 1d numeric dataset:
if thisis set to 'veusz', this is the number of seconds since 2009-01-01, if thisis set to 'unix’, this is the number
of seconds since 1970-01-01. For a text dataset, this should give the format of the date/time, eg. 'YYYY-MM-
DD|T|hh:mm:ss' or 'iso’ for iso format.

renamesisadict mapping old to new dataset names, to be renamed after importing. linked specifiesthat the dataset
islinked to thefile.

Attributes can be used in datasets to override defaults:
'vsz_nane': set to override nane for dataset in veusz
vsz _slice': slice on inporting (use format "start:stop:step,...")
vsz_range': should be 4 itemarray to specify x and y ranges:
[mnx, mny, nmaxx, nmxy]
vsz _twod_as _oned': treat 2d dataset as 1d dataset with errors
vsz_convert _datetine': treat as date/tine, set to one of the val ues
above.

For compound datasets these attributes can be given on a per-column basis using attribute names vsz_attribute-
name_columnname.

Returns: list of imported datasets

ImportFileND

def ImportFileND(comm, filename, dataset, shape=None, transpose=False, mode="text', csvdelimiter=",",
csvtextdelimiter=""", csvlocale="en_US, prefix="", suffix="", encoding="utf_8', linked=False)

Import an n-dimensional dataset from a file. The file should either be in CSV format (mode="csv') or white-
space-separated text (mode="text"). A one-dimensional dataset isgiven asalist of numberson asingleline/row. A
two-dimensional dataset isgiven by aset of rows. A three-dimensional dataset isgiven by aset of two-dimensional
datasets, with blank lines between them. afour-dimensional dataset is given by a set of three-dimensional datasets
with two blank lines between each. Each additional dataset increases the separating number of blank lines by one.
Alternatively, the numbers can be given in any form (number of numbers on each row) and "shape” is included
to reshape the data into the desired shape.

In thefile, or included as parameters above, the command "shape num1 num2..." can be included to reshape the
output dataset to the shape given by the numbers in the row after "shape” (these should be in separate columns
in CSV format). If one of these numbersis -1, then this dimension is inferred from the number of values and the
other dimensions. Also supported is the "transpose” command or optional argument which reverses the order of
the dimensions.

ImportFilePlugin

ImportFilePlugin(' pluginname', 'filename', **pluginargs, linked=False, encoding="utf_8', prefix="", suf-
fix="", renames=(})

22

Command line interface

Import data from file using import plugin ‘pluginname’. The arguments to the plugin are given, plus optionally a
text encoding, and prefix and suffix to prepend or append to dataset names. renames, if set, provides new names
for datasets after import.

ImportFITSFile

ImportFI TSFile(datasetname, filename, hdu, datacol='A’, symerrcol='B', poserrcol="C', negerrcol="D",
linked=True/False, renames={})

Thiscommand doesasimpleimport from aFITSfile. The FITSformat isused within the astronomical community
to transport binary data. For amore powerful FITS interface, you can use PyFI TS within your scripts.

The datasetname is the name of the dataset to import, the filename is the name of the FITS file to import from.
The hdu parameter specifies the HDU to import data from (numerical or aname).

If the HDU specified is a primary HDU or image extension, then a two-dimensional dataset is loaded from the
file. The optional parameters (other than linked) are ignored. Any WCS information within the HDU are used to
provide a suitable xrange and yrange.

If the HDU is a table, then the datacol parameter must be specified (and optionally symerrcol, poserrcol and
negerrcol). The dataset is read in from the named column in the table. Any errors are read in from the other
specified columns.

If linked is True, then the dataset is not saved with a saved document, but is reread from the data file each time
the document is loaded. renames, if set, provides new names for datasets after import.

ImportString
ImportString(‘descriptor’, 'data’)

Like, ImportFile, but loads the data from the specfied string rather than afile. This allows data to be easily em-
bedded within a document. The data string is usually a multi-line Python string.

Returns: A tuple containing alist of theimported datasets and the number of conversionswhich failed for adataset.

Changed in version 0.5: A tupleis returned rather than just the number of imported variables.

InportString('x y',

1 2
2 5
3 10

D)
ImportString2D

ImportString2D(datasets, string, xrange=None, yrange=None, invertrows=None, invertcols=None, trans-
pose=None)

Imports atwo-dimensional dataset from the string given. Thisis similar to the ImportFile2D command, with the
same dataset format within the string. The optional values are also listed there. The various controlling parameters
can be set within the string. See the ImportFile2D section for details.

ImportStringND

ImportStringND(dataset, string, shape=None, transpose=False)

Imports an-dimensional dataset from the string given. Thisissimilar to the ImportFileND command. Please look
there for more detail and the description of the optional parameters and in-stream allowed parameters.

23

Command line interface

IsClosed

I sClosed()
Returns a boolean value telling the caller whether the plotting window has been closed.

Note: this command is only supported in the embedding interface.
List
List(where=".")

List the widgets which are contained within the widget with the path given, the type of widgets, and a brief
description.

Load

L oad('filename.vsz')

L oads the veusz script file given. The script file can be any Python code. The code is executed using the Veusz
interpreter.

Note: thiscommand is only supported at the command line and not in a script. Scripts may use the python execfile
function instead.

MoveToPage

M oveT oPage(pagenum)
Updates window to show the page number given of the document.

Note: this command is only supported in the embedding interface or veusz_listen.

ReloadData

ReloadData()

Reload any datasets which have been linked to files.

Returns: A tuple containing alist of theimported datasets and the number of conversionswhich failed for adataset.
Rename

Remove('widgetpath', 'newname’)

Renamethewidget at the path given to anew name. Thiscommand does not movewidgets. See To for adescription
of the path syntax. . can be used to select the current widget.

Remove
Remove(' widgetpath')

Remove the widget selected using the path. See To for adescription of the path syntax.

ResizeWindow

ResizeWindow(width, height)

24

Command line interface

Resizes window to be width by height pixels.

Note: this command is only supported in the embedding interface or veusz_listen.

Save

Save('filename.vsz')

Save the current document under the filename given.

Set

Set('settingpath’, val)
Set the setting given by the path to the value given. If the type of val is incorrect, an InvalidType exception

is thrown. The path to the setting is the optional path to the widget the setting is contained within, an optional
subsetting specifier, and the setting itself.

Set (' pagel/ graphl/x/mn', -10.)

SetAntiAliasing

SetAntiAliasing(on)

Enable or disable anti aliasing in the plot window, replotting the image.

SetData

SetData(name, val, symerr=None, negerr=None, poser r=None)

Set the dataset name with the values given. If Noneis given for anitem, it will be left blank. val isthe actual data,
symerr are the symmetric errors, negerr and poserr and the getative and positive asymmetric errors. The data can
be given as lists or numpys.

SetDataExpression
SetDataExpression(name, val, symerr=None, neger r=None, poserr=None, linked=False, parametric=None)

Create a new dataset based on the expressions given. The expressions are Python syntax expressions based on
existing datasets.

If linked is True, the dataset will change as the datasets in the expressions change.

Parametric can be set to a tuple of (minval, maxval, numitems). t in the expression will iterate from minval to
maxval in numitems values.

SetDataND

SetDataRange(name, val)

Set an-dimensional dataset to be the values given by val. val should be an n-dimensional numpy array of values,
or alist of lists.

SetDataRange

SetDataRange(name, numsteps, val, symerr=None, neger r=None, poserr=None, linked=False)

25

Command line interface

Set dataset to be arange of values with numsteps steps. val istuple made up of (minimum value, maximum value).
symerr, negerr and poserr are optional tuples for the error bars.

If linked is True, the dataset can be saved in a document as a SetDataRange, otherwiseiit is expanded to the values
which would make it up.

SetData2D

SetData2D('name’, val, xrange=(A,B), yrange=(C,D), xgrid=[1,2,3...], ygrid=[4,5,6...])

Creates a two-dimensional dataset with the name given. val is either atwo-dimensional numpy array, or isalist
of lists, with each list in the list representing arow. Do not give xrange if xgrid is set and do not give yrange if
ygrid is set, and vice versa.

xrange and yrange are optional tuples giving the inclusive range of the X and Y coordinates of the data. xgrid
and ygrid are optional lists, tuples or arrays which give the coordinates of the edges of the pixels. There should
be one more item in each array than pixels.

SetData2DExpression
SetData?DExpression('name'’, expr, linked=False)

Create a 2D dataset based on expressions. nameisthe new dataset name expr is an expression which should return
a 2D array linked specifies whether to permanently link the dataset to the expressions.

SetData2DExpressionXYZ

SetData2DExpressionXYZ('name', 'xexpr', 'yexpr', 'zexpr', linked=False)

Create a 2D dataset based on three 1D expressions. The X, y expressions need to evaluate to a grid of X, y points,
with the z expression as the 2D value at that point. Currently only linear fixed grids are supported. This function
is intended to convert calculations or measurements at fixed points into a 2D dataset easily. Missing values are
filled with NaN.

SetData2DXYFunc

SetData2DXY Func('name', xstep, ystep, 'expr', linked=False)
Construct a 2D dataset using a mathematical expression of "x" and "y". The x values are specified as (min, max,

step) in xstep asatuple, they values similarly. If linked remains as False, then areal 2D dataset is created, where
values can be modified and the data are stored in the saved file.

SetDataDateTime

SetDataDateTime('name’, vals)

Creates a datetime dataset of name given. valsisalist of Python datetime objects.

SetDataText

SetDataT ext(name, val)

Set the text dataset name with the values given. val must be atype that can be converted into a Python list.

Set Dat aText (' myl abel ', ['oranges', 'apples', 'pears', 'spam])

SetToReference

26

Command line interface

Set T oRefer ence(setting, refval)

Set setting to match other setting refval always..

SetUpdatelnterval

SetUpdatel nterval(interval)

Tells window to update every interval milliseconds at most. The value 0 disables updates until this function is
called with anon-zero. The value -1 tells Veusz to update the window every time the document has changed. This
will makethingsslow if repeated changes are made to the document. Disabling updates and using the ForceUpdate
command will allow the user to control updates directly.

Note: this command is only supported in the embedding interface or veusz_listen.

SetVerbose

SetVerbose(v=True)

If visTrue, then extrainformation is printed out by commands.

StartSecondView

StartSecondView(name = 'window title')

In the embedding interface, this method will open anew Embedding interface onto the same document, returning
the object. This new window provides asecond view onto the document. It can, for instance, show adifferent page
to the primary view. name is awindow title for the new window.

Note: this command is only supported in the embedding interface.

TagDatasets
TagDatasets('tag’, ['dsl’, 'ds2'...])

Adds the tag to the list of datasets given..

To
To('widgetpath')
The To command takes a path to awidget and movesto that widget. For example, thismay be"/", the root widget,

"graphl", "/pagel/graphl/x", "../x". The syntax is designed to mimic Unix paths for files. "/" represents the base
widget (where the pagesreside), and ".." represents the widget next up the tree.

Quit
Quit()

Quits Veusz. Thisisonly supported in veusz_listen.

WaitForClose

WaitFor Close()
Wait until the plotting window has been closed.

Note: this command is only supported in the embedding interface.

27

Command line interface

Zoom

Zoom(factor)

Sets the plot zoom factor, relative to a 1:1 scaling. factor can also be "width", "height" or "page", to zoom to the
page width, height or page, respectively.

Thisisonly supported in embedded mode or veusz_listen.

Security

With the 1.0 release of Veusz, input scripts and expressions are checked for possible security risks. Only alimited
subset of Python functionality is allowed, or a dialog box is opened allowing the user to cancel the operation.
Specifically you cannot import modules, get attributes of Python objects, access globals() or locals() or do any
sort of file reading or manipulation. Basically anything which might bresk in Veusz or modify a system is not
supported. In addition internal Veusz functions which can modify a system are also warned against, specifically
Print(), Save() and Export().

If you are running your own scripts and do not want to be bothered by these dialogs, you can run veusz with the
--unsafe-mode option.

28

Chapter 4. Using Veusz from other
programs

Non-Qt Python programs

Veusz can be used as a Python module for plotting data. There are two ways to use the module: (1) with an older
path-based V eusz commands, used in Veusz saved document files or (2) using an object-oriented interface. With
the old style method the user uses a unix-path inspired API to navigate the widget tree and add or manipulate
widgets. With the new style interface, the user navigates the tree with attributes of the Root object to access
Nodes. The new interfaceis likely to be easier to use unless you are directly transating saved files.

Older path-based interface

"""An exanpl e enbeddi ng program Veusz needs to be installed into
the Python path for this to work (use setup. py)

This animates a sin plot, then finishes

i mport tine

i mport numpy
i mport veusz.enbed as veusz

construct a Veusz enbedded wi ndow

many of these can be opened at any tine
g = veusz. Enbedded(' wi ndow title')

g. Enabl eTool bar ()

construct the plot

g. To(g.Add(' page'))

g. To(g.Add('graph'))

g. Add(' xy', marker="tiehorz', MarkerFill__color="green')
this stops intelligent axis extending
g. Set (' x/ aut oExt end' , Fal se)

g. Set (' x/ aut oExt endZer o', Fal se)

zoom out

g. Zoon(0. 8)

|l oop, changing the values of the x and y datasets
for i in range(10):

X = nunpy.arange(0+i/2., 7.+ /2., 0.05)

y = nunpy. si n(x)

g.SetData('x', Xx)

g.SetData('y', vy)

wait to animate the graph
tinme.sleep(2)

let the user see the final result
print "Waiting for 10 seconds”
tinme. sl eep(10)

29

Using Veusz from other programs

print "Done!"

close the window (this is not strictly necessary)
g. G ose()

The embed interface has the methods listed in the command line interface listed in the Veusz manual http://
home.gna.org/veusz/docs/manual .html

Multiple Windows are supported by creating more than one Enbedded object. Other useful methods include:
* Wi t For O ose() - wait until window has closed

« Getdick() -returnalist of (axi s, val ue) tupleswherethe user clicks on agraph
* Resi zeWhdow(wi dt h, hei ght) -resizewindow to bewi dt h x hei ght pixels

» Set Updat el nterval (interval) -setupdateinterval inmsor Oto disable

* MoveToPage(page) - display page given (starting from 1)

* 1 sC osed() - hasthe page been closed

e Zoon(factor) -setzoom level (float) or 'page’, 'width', 'height’

* Cl ose() - closewindow

e Set Anti Al'i asi ng(enabl e) - enableor disable antialiasing

* Enabl eTool bar (enabl e=Tr ue) - enable plot toolbar

e Start SecondVi ewm nane=' Veusz') - start asecond view onto the document of the current Enbedded
object. Returns anew Enbedded object.

* W pe() - wipethedocument of al widgets and datasets.

New-style object interface

In versions of Veusz >1.8 is a new style of object interface, which makes it easier to construct the widget tree.
Each widget, group of settings or setting is stored as a Node object, or its subclass, in atree. The root document
widget can be accessed with the Root object. The dot operator "." finds children inside other nodes. In Veusz
some widgets can contain other widgets (Root, pages, graphs, grids). Widgets contain setting nodes, accessed as
attributes. Widgets can also contain groups of settings, again accessed as attributes.

An example tree for adocument (not complete) might look like this

Root
\-- pagel (page w dget)
\-- graphl (graph wi dget)
\-- X (axi s w dget)
\-- y (axi s w dget)
\-- function (function wi dget)
\-- gridl (grid wi dget)
\-- graph2 (graph wi dget)
\-- xyl (xy wi dget)
\-- xData (setting)
\-- yData (setting)

\-- PlotLine (setting group)
\-- width (setting)

\-- X (axi s w dget)

30

Using Veusz from other programs

\-- vy (axi s w dget)
\-- graph3 (graph wi dget)
\-- contourl (contour w dget)
\-- X (axi s w dget)
\-- vy (axi s w dget)

Herethe user could accessthexDatasetting node of the xy1l widget using Root . pagel. gr aph2. xy1. xDat a.
To actually read or modify the value of a setting, you should get or set theval property of the setting node. The
line width could be changed like this

graph = enbed. Root . pagel. graph2
graph. xy1. Pl ot Li ne. wi dt h. val = '2pt"’

For instance, this constructs a simple x-squared plot which changes to x-cubed:

i mport veusz.enbed as veusz
i mport tinme

open a new wi ndow and return a new Enbedded obj ect

enbed = veusz. Enbedded(' wi ndow title")

nake a new page, but adding a page w dget to the root wi dget

page = enbed. Root. Add(' page')

add a new graph wi dget to the page

graph = page. Add(' graph")

add a function widget to the graph. The Add() method can take a list of settings
to set after widget creation. Here, "function="x**2"" is equivalent to

function.function.val = "'x**2'

function = graph. Add(' function', function="x**2")

time. sl eep(2)

function. function.val = 'x**3'
this is the same if the w dgets have the default nanes
Root . pagel. graphl. functionl. function.val = 'x**3

If the document contains a page called "pagel” then Root . pagel isthe object representing the page. Similarly,
Root . pagel. graphlisagraphcaled gr aphl inthe page. Y ou can also use dictionary-style indexing to get
child widgets, e.g. Root['pagel]['graphl]. This styleis easier to use if the names of widgets contain spaces or if
widget names shadow methods or properties of the Node object, i.e. if you do not control the widget names.

Widget nodes can contain as children other widgets, groups of settings, or settings. Groups of settings can contain
child settings. Settings cannot contain other nodes. Here are the useful operations of Nodes:

cl ass Node(object):
"""properties:
path - return path to object in docunent, e.g. /pagel/graphl/functionl
type - type of node: "widget", "settinggroup" or "setting"
nane - nanme of this node, e.g. "graphl"
children - a generator to return all the child Nodes of this Node, e.g.
for ¢ in Root.children:
print c.path
children_wi dgets - generator to return child wi dget Nodes of this Node
children_settinggroups - generator for child setting groups of this Node
children_settings - a generator to get the child settings
childnanes - return a list of the names of the children of this Node

31

Using Veusz from other programs

chil dnanes_wi dgets - return a list of the names of the child wi dgets

chil dnanes_settinggroups - return a list of the names of the setting groups
chil dnanes_settings - return a list of the names of the settings

parent - return the Node corresponding to the parent w dget of this Node

__getattr__ - get a child Node with name given, e.g. Root.pagel
__getitem - get a child Node with name given, e.g. Root['pagel']

def fronPat h(self, path):
"""Returns a new Node corresponding to the path given, e.g. '/pagel/graphl' """

cl ass SettingNode(Node):
""" A node which corresponds to a setting. Extra properties:
val - get or set the setting value corresponding to this value, e.g.
Root . pagel. graphl. | eft Margin.val = "'2cm

cl ass Setti ngG oupNode(Node) :

"""A node corresponding to a setting group. No extra properties."""
cl ass W dget Node(Node) :

"""A node corresponding to a w dget.

property:
wi dgettype - get Veusz type of wi dget

Met hods are bel ow.

def Wal kW dget s(sel f, wi dgettype=None):
"""Cenerator to wal k widget tree and get w dgets below this
W dget Node of type given.

wi dgettype is a Veusz w dget type name or None to get all
wi dgets. """

def Add(self, wi dgettype, *args, **args_opt):
"""Add a widget of the type given, returning the Node instance.

def Rename(sel f, newnane):

"""Renanes w dget to nane given.

Exi sting Nodes corresponding to children are no |onger valid."""
def Action(self, action):

""" Applies action on w dget."""
def Renove(sel f):

"""Renmoves a widget and its children.

Exi sting Nodes corresponding to children are no | onger valid.

Note that Nodes are temporary objects which are created on the fly. A real widget in Veusz can have several
different WidgetNode objects. The operators == and != can test whether a Node points to the same widget, setting
or setting group.

Here is an example to set al functions in the document to be x* * 2:

32

Using Veusz from other programs

for n in Root.Wal kW dget s(wi dgettype="'function'):
n.function.val = 'x**2

Translating old to new style

Here is an example how you might trandate the old to new style interface (this is taken from the si n. vsz
example).

old (fromsaved docunment file)

Add(' page', name='pagel')

To(' pagel')

Add(' graph', name='graphl', autoadd=Fal se)
To(' graphl')

Add("' axi s', name='x")

To(' x")

Set('label', "\\italic{x}")
To('..")

Add(' axis', name='y')

To('y")

Set('label', "sin \\italic{x}")
Set('direction', 'vertical')
To('..")

Add(' xy', name='xyl')

To(' xyl")

Set (' MarkerFill/color', 'cyan')
To('..")

Add(' function', name='functionl')
To(' functionl')

Set (' function', 'sin(x)")
Set (' Line/color', 'red")
To('..")
To('..")
To('..")

new (in python)
i mport veusz. enbed
enbed = veusz. enbed. Enbedded(' wi ndow title")

page = enbed. Root. Add(' page')

note: autoAdd=Fal se stops graph automatically addi ng own axes (used in saved fil es)
graph = page. Add(' graph', autoadd=Fal se)
x = graph. Add(' axi s', nanme='x")

x.label .val = "\\italic{x}'

y = graph. Add(' axi s', nane='y")
y.direction.val = 'vertical'’

xy = graph. Add("' xy")

xy. MarkerFill.color.val = "'cyan'

func = graph. Add(' function")

func. function.val = "sin(x)'

func. Line.color.val = 'red

33

Using Veusz from other programs

PyQt4 programs

There isno direct PyQt4 interface. The standard embedding interface should work, however.

Non Python programs

Support for non Python programs is available in alimited form. External programs may execute the veusz_listen
executableor veusz_listen.py Python module. Veusz will read itsinput from the standard input, and write output to
standard output. Thisisafull Python execution environment, and supports all the scripting commands mentioned
in Commands, a Quit() command, the EnableT oolbar () and the Zoom(factor) command listed above. Only one
window is supported at once, but many veusz_listen programs may be started.

veusz_listen may be used from the shell command line by doing something like:

veusz_listen < in.vsz

where in.vsz contains:

To(Add(' page'))

To(Add(' graph'))

Set Dat a(' x', arange(20))
SetData('y', arange(20)**2)
Add("' xy')

Zoon(0. 5)

Export ("f 0o. eps")

Quit()

A program may interface with Veusz in this way by using the popen C Unix function, which alows a program
to be started having control of its standard input and output. Veusz can then be controlled by writing commands
to an input pipe.

C, C++ and Fortran

A cdllable library interface to Veusz is on my todo list for C, C++ and Fortran. Please tell me if you would be
interested in this option.

